Influence of SIC control rod material on the iodine release in case of nuclear severe accident – Chemical reactivity with fission products in thermal conditions of RCS

2022 ◽  
Vol 168 ◽  
pp. 108900
Author(s):  
A.C. Grégoire ◽  
S. Sobanska ◽  
C. Tornabene ◽  
D. Talaga ◽  
A.S. Mamede ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-25 ◽  
Author(s):  
Bruno Gonfiotti ◽  
Sandro Paci

The integral Phébus tests were probably one of the most important experimental campaigns performed to investigate the progression of severe accidents in light water reactors. In these tests, the degradation of a PWR fuel bundle was investigated employing different control rod materials and burn-up levels in strongly or weakly oxidizing conditions. From the results of such tests, numerical codes such as ASTEC and MELCOR have been developed to describe the evolution of a severe accident. After the termination of the experimental Phébus campaign, these two codes were furthermore expanded. Therefore, the aim of the present work is to reanalyze the first Phébus test (FPT-0) employing the updated ASTEC and MELCOR versions to ensure that the new improvements introduced in such codes allow also a better prediction of these Phébus tests. The analysis focuses on the stand-alone containment aspects of this test, and the paper summarizes the main thermal-hydraulic results and presents different sensitivity analyses carried out on the aerosols and fission products behavior. This paper is part of a series of publications covering the four executed Phébus tests employing a solid PWR fuel bundle: FPT-0, FPT-1, FPT-2, and FPT-3.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Bruno Gonfiotti ◽  
Sandro Paci

After the severe accident (SA) occurred at the Three-Miles Island Nuclear Power Plant (NPP), important efforts on the investigation of the different phenomena during this kind of accidents have been started. Several experimental campaigns investigating one phenomenon at time or the combination of two or more phenomena have been performed. Today, the Phébus experimental campaign is probably the most important activity on the evaluation of the coupling among different phenomena. Four out of five tests investigated the degradation of an intact Pressurized Water Reactor (PWR) fuel bundle and the subsequent transport of Fission Products (FP) and Structural Materials (SM) through the primary circuit and into the containment, while the fifth test was only the degradation of a bed of PWR fuel bundle debris. These tests were performed between 1990 and 2010 at the CEA Cadarache laboratories (France) in a 5000:1 scaled facility. The main four tests varied the employed control rod materials, the fuel burn-up, and the oxidizing conditions of the atmosphere (strongly or weakly). The outcomes of this experimental campaign created a solid base for the understanding of the involved phenomena and allowed the development of models and software codes capable of simulating the evolution of a SA in a real NPP. ASTEC and MELCOR were two of the main SA codes profiting from the results of this Phébus campaign. These two codes were further improved in the latest years to account for the findings obtained in more recent experimental campaigns. A continuous verification and validation work is then necessary to check how the newer code’s versions reproduce the tests performed in these older experimental campaigns such as Phébus one. The present work is intended to be the final step of a series of publications covering the activities carried out at University of Pisa with the ASTEC and the MELCOR SA codes on the four Phébus tests employing an intact PWR fuel bundle. Because of the complexity and the extent of these tests, only the containment aspects were considered in the precedent works, i.e., only the thermal-hydraulics transient and its coupling with the FP and SM behavior. Then, general conclusions based on the outcomes of these precedent works are summarized in this work.


Author(s):  
Bruno Gonfiotti ◽  
Sandro Paci

The estimation of Fission Products (FPs) release from the containment system of a nuclear plant to the external environment during a Severe Accident (SA) is a quite complex task. In the last 30–40 years several efforts were made to understand and to investigate the different phenomena occurring in such a kind of accidents in the primary coolant system and in the containment. These researches moved along two tracks: understanding of involved phenomenologies through the execution of different experiments, and creation of numerical codes capable to simulate such phenomena. These codes are continuously developed to reflect the actual SA state-of-the-art, but it is necessary to continuously check that modifications and improvements are able to increase the quality of the obtained results. For this purpose, a continuous verification and validation work should be carried out. Therefore, the aim of the present work is to re-analyze the Phébus FPT-1 test employing the ASTEC (F) and MELCOR (USA) codes. The analysis focuses on the stand-alone containment aspects of the test, and three different modellisations of the containment vessel have been developed showing that at least 15/20 Control Volumes (CVs) are necessary for the spatial schematization to correctly predict thermal-hydraulics and the aerosol behavior. Furthermore, the paper summarizes the main thermal-hydraulic results, and presents different sensitivity analyses carried out on the aerosols and FPs behavior.


Author(s):  
Kazuhiro Kamei ◽  
Kazuyoshi Kataoka ◽  
Kazuto Imasaki ◽  
Noboru Saito

European Advanced Boiling Water Reactor (EU-ABWR) is developed by Toshiba. EU-ABWR accommodates an armored reactor building against Airplane Crash, severe accident mitigation systems, the N+2 principle in safety systems, the diversity principle and a large output of 1600 MWe. These features enable EU-ABWR’s design objectives and principles to be consistent with the requirements in the Finnish utility and the safety requirements of Finnish YVL guide. By adopting Scandinavian outage processes, the Plant Availability is aimed to be greater than 95%. ABWRs have an excellent design potential to acheive short outage duration (e.g., shortening of maintenance and inspection duration by applying Fine Motion Control Rod Drive and Reactor Internal Pump). In addition, the EU-ABWR applies following key design improvements to reduce a refueling outage duration; a) Direct Reactor Pressure Vessel (RPV) Head Spray System, b) Self-standing Control Rods and c) Water shielding reactor pool. In this paper, coolability of RPV due to application of the Direct RPV Head Spray System is also verified with numerical evaluations by Computation Fluid Dynamics (CFD) analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Taeseok Kim ◽  
Wonjun Choi ◽  
Joongoo Jeon ◽  
Nam Kyung Kim ◽  
Hoichul Jung ◽  
...  

During a hypothesized severe accident, a containment building is designed to act as a final barrier to prevent release of fission products to the environment in nuclear power plants. However, in a bypass scenario of steam generator tube rupture (SGTR), radioactive nuclides can be released to environment even if the containment is not ruptured. Thus, thorough mitigation strategies are needed to prevent such unfiltered release of the radioactive nuclides during SGTR accidents. To mitigate the consequence of the SGTR accident, this study was conducted to devise a conceptual approach of installing In-Containment Relief Valve (ICRV) from steam generator (SG) to the free space in the containment building and it was simulated by MELCOR code for numerical analysis. Simulation results show that the radioactive nuclides were not released to the environment in the ICRV case. However, the containment pressure increased more than the base case, which is a disadvantage of the ICRV. To minimize the negative effects of the ICRV, the ICRV linked to Reactor Drain Tank (RDT) and cavity flooding was performed. Because the overpressurization of containment is due to heat of ex-vessel corium, only cavity flooding was effective for depressurization. The conceptual design of the ICRV is effective in mitigating the SGTR accident.


Author(s):  
Ronghua Chen ◽  
Lie Chen ◽  
Wenxi Tian ◽  
Guanghui Su ◽  
Suizheng Qiu

In the typical boiling water reactor (BWR), each control rod guide tube supports four fuel assemblies via an orificed fuel support piece in which a channel is designed to be a potential corium relocation path from the core region to the lower head under severe accident conditions. In this study, the improved Moving Particle Semi-implicit (MPS) method was adopted to analyze the melt flow and ablation behavior in this region during a severe accident of BWR. A three-dimensional particle configuration was constructed for analyzing the melt flow behavior within the fuel support piece. Considering the symmetry of the fuel support piece, only one fourth of the fuel support was simulated. The eutectic reaction between Zr (the material of the corium) and stainless steel (the material of the fuel support piece) was taken into consideration. The typical melt flow and freezing behaviors within the fuel support piece were successfully reproduced by MPS method. In all the simulation cases, the melt discharged from the hole of the fuel support piece instead of plugging the fuel support piece. The results indicate that MPS method has the capacity to analyze the melt flow and solidification behavior in the fuel support piece.


2006 ◽  
Vol 981 ◽  
Author(s):  
Liviu Popa-Simil ◽  
Gabriel Vasilescu

AbstractHigher conversion efficiencies require high operation temperatures that are difficult to obtain due to the actual thermo-physical properties of the nuclear fuels. The initial intrinsic thermal conductivity of the actual fuel pellets, mainly ceramics like structures (oxides, nitrides, carbides, MOX, beads) is low. The center of the pellet is near melting temperature while the cladding operation temperature has to be low. The fission products deposition and burnup effects are further dimming the thermal conductivity. More the cooling agent's chemical reactivity increases with temperature is another main reasons of keeping the operation temperature low. The usage of a hetero-structure of solid fuel soaked into a drain fluid is increasing the thermal conductivity. Properly shaped beads structure drives to the possibility of preventing most of the fission products of being stored inside the fuel lattice deteriorating its properties, being drained outside the nuclear reactor. This changes inspired from the nature, makes the nuclear reactor resembling with a plant having self cleaning and curing properties while operating at higher temperatures. Immersing the fuel into liquid metal higher operation temperatures are allowed due to increase in thermal conductivity by 3 to 20 times. Making the fuel beads shorter than the range of fission products, their trajectories end in the drain liquid that is tolerant to nuclear recoils damage. Due to better thermal conductivity the temperature field differences inside the nuclear reactor becomes smaller, allowing the operating temperature to rise significantly without safety concerns. There is possible to continuously remove the fission products by smoothly circulating the drain liquid. The low flow is needed to give time to short lives fission products to decay inside the reactor highly shielded volume. There are several fissionable materials and drain liquids matching which assure high operation temperatures, and allow He cooling, and high temperatures gas turbines cycles. The conversion efficiency might be higher than 70% depending on the chosen actinide / drain-liquid / cooling-liquid combination. The new concept on fission products continuous release and separation minimizes the waste and the total radioactivity stored inside the reactor to few weeks integrated operation amount remaining constant over the time. That makes the fuel's remnant radioactivity lower by a factor >100 than the actual reactors level. The fuel reactivity might be controlled by poisoning and transmutation or by assuring specific reactive geometries which to allow a ultrahigh burnup without the need of over-criticality loads. The fuel's deformability opens the way for interesting applications. The advantages of micro structured nuclear fuel are higher thermal conductivity, fission products removal, appropriate reactivity, higher efficiencies and longer fuel life.


2021 ◽  
Vol 68 (2) ◽  
pp. 152-158
Author(s):  
E. V. Usov ◽  
V. I. Chukhno ◽  
I. A. Klimonov ◽  
V. D. Ozrin ◽  
N. A. Mosunova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document