scholarly journals Early-life Exposure to Widespread Environmental Toxicants and Health Risk: A Focus on the Immune and Respiratory Systems

2016 ◽  
Vol 82 (1) ◽  
pp. 119 ◽  
Author(s):  
Junjun Cao ◽  
Xijin Xu ◽  
Machteld N. Hylkema ◽  
Eddy Y. Zeng ◽  
Peter D. Sly ◽  
...  
Author(s):  
Joe Jongpyo Lim ◽  
Moumita Dutta ◽  
Joseph L Dempsey ◽  
Hans-Joachim Lehmler ◽  
James MacDonald ◽  
...  

Abstract Recent evidence suggests that complex diseases can result from early life exposure to environmental toxicants. Polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) and remain a continuing risk to human health despite being banned from production. Developmental BPA exposure mediated-adult onset of liver cancer via epigenetic reprogramming mechanisms has been identified. Here, we investigated whether the gut microbiome and liver can be persistently reprogrammed following neonatal exposure to POPs, and the associations between microbial biomarkers and disease-prone changes in the hepatic transcriptome in adulthood, compared to BPA. C57BL/6 male and female mouse pups were orally administered vehicle, BPA, BDE-99 (a breast milk-enriched PBDE congener), or the Fox River PCB mixture (PCBs), once daily for three consecutive days (postnatal days [PND] 2 to 4). Tissues were collected at PND5 and PND60. Among the three chemicals investigated, early life exposure to BDE-99 produced the most prominent developmental reprogramming of the gut-liver axis, including hepatic inflammatory and cancer-prone signatures. In adulthood, neonatal BDE-99 exposure resulted in a persistent increase in Akkermansia muciniphila throughout the intestine, accompanied by increased hepatic levels of acetate and succinate, the known products of A. muciniphila. In males, this was positively associated with permissive epigenetic marks H3K4me1 and H3K27, which were enriched in loci near liver cancer-related genes that were dysregulated following neonatal exposure to BDE-99. Our findings provide novel insights that early life exposure to POPs can have a life-long impact on disease risk, which may partly be regulated by the gut microbiome.


BMJ Open ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. e030427 ◽  
Author(s):  
Wei Perng ◽  
Marcela Tamayo-Ortiz ◽  
Lu Tang ◽  
Brisa N Sánchez ◽  
Alejandra Cantoral ◽  
...  

PurposeThe Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) Project is a mother–child pregnancy and birth cohort originally initiated in the mid-1990s to explore: (1) whether enhanced mobilisation of lead from maternal bone stores during pregnancy poses a risk to fetal and subsequent offspring neurodevelopment; and (2) whether maternal calcium supplementation during pregnancy and lactation can suppress bone lead mobilisation and mitigate the adverse effects of lead exposure on offspring health and development. Through utilisation of carefully archived biospecimens to measure other prenatal exposures, banking of DNA and rigorous measurement of a diverse array of outcomes, ELEMENT has since evolved into a major resource for research on early life exposures and developmental outcomes.Participantsn=1643 mother–child pairs sequentially recruited (between 1994 and 2003) during pregnancy or at delivery from maternity hospitals in Mexico City, Mexico.Findings to dateMaternal bone (eg, patella, tibia) is an endogenous source for fetal lead exposure due to mobilisation of stored lead into circulation during pregnancy and lactation, leading to increased risk of miscarriage, low birth weight and smaller head circumference, and transfer of lead into breastmilk. Daily supplementation with 1200 mg of elemental calcium during pregnancy and lactation reduces lead resorption from maternal bone and thereby, levels of circulating lead. Beyond perinatal outcomes, early life exposure to lead is associated with neurocognitive deficits, behavioural disorders, higher blood pressure and lower weight in offspring during childhood. Some of these relationships were modified by dietary factors; genetic polymorphisms specific for iron, folate and lipid metabolism; and timing of exposure. Research has also expanded to include findings published on other toxicants such as those associated with personal care products and plastics (eg, phthalates, bisphenol A), other metals (eg, mercury, manganese, cadmium), pesticides (organophosphates) and fluoride; other biomarkers (eg, toxicant levels in plasma, hair and teeth); other outcomes (eg, sexual maturation, metabolic syndrome, dental caries); and identification of novel mechanisms via epigenetic and metabolomics profiling.Future plansAs the ELEMENT mothers and children age, we plan to (1) continue studying the long-term consequences of toxicant exposure during the perinatal period on adolescent and young adult outcomes as well as outcomes related to the original ELEMENT mothers, such as their metabolic and bone health during perimenopause; and (2) follow the third generation of participants (children of the children) to study intergenerational effects of in utero exposures.Trial registration numberNCT00558623.


2016 ◽  
Vol 86 (1-2) ◽  
pp. 36-47 ◽  
Author(s):  
Imen Dridi ◽  
Nidhal Soualeh ◽  
Torsten Bohn ◽  
Rachid Soulimani ◽  
Jaouad Bouayed

Abstract.This study examined whether perinatal exposure to polluted eels (Anguilla anguilla L.) induces changes in the locomotor activity of offspring mice across lifespan (post-natal days (PNDs) 47 – 329), using the open field and the home cage activity tests. Dams were exposed during gestation and lactation, through diets enriched in eels naturally contaminated with pollutants including PCBs. Analysis of the eel muscle focused on the six non-dioxin-like (NDL) indicator PCBs (Σ6 NDL-PCBs: 28, 52, 101, 138, 153 and 180). Four groups of dams (n = 10 per group) received either a standard diet without eels or eels (0.8 mg/kg/day) containing 85, 216, or 400 ng/kg/day of ϵ6 NDL-PCBs. The open field test showed that early-life exposure to polluted eels increased locomotion in female offspring of exposed dams but not in males, compared to controls. This hyperlocomotion appeared later in life, at PNDs 195 and 329 (up to 32 % increase, p < 0.05). In addition, overactivity was observed in the home cage test at PND 305: exposed offspring females showed a faster overall locomotion speed (3.6 – 4.2 cm/s) than controls (2.9 cm/s, p <0.05); again, males remained unaffected. Covered distances in the home cage test were only elevated significantly in offspring females exposed to highest PCB concentrations (3411 ± 590 cm vs. 1377 ± 114 cm, p < 0.001). These results suggest that early-life exposure to polluted eels containing dietary contaminants including PCBs caused late, persistent and gender-dependent neurobehavioral hyperactive effects in offspring mice. Furthermore, female hyperactivity was associated with a significant inhibition of acetylcholinesterase activity in the hippocampus and the prefrontal cortex.


PEDIATRICS ◽  
2020 ◽  
Vol 146 (Supplement 4) ◽  
pp. S332.2-S333
Author(s):  
Suzanne R. Kochis ◽  
Jennifer Dantzer

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1999-P ◽  
Author(s):  
HYE LIM NOH ◽  
SUJIN SUK ◽  
RANDALL H. FRIEDLINE ◽  
KUNIKAZU INASHIMA ◽  
DUY A. TRAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document