scholarly journals Schwarzschild-like black hole with a topological defect in bumblebee gravity

2021 ◽  
pp. 168721
Author(s):  
İbrahim Güllü ◽  
Ali Övgün
1996 ◽  
Vol 05 (01) ◽  
pp. 53-63 ◽  
Author(s):  
JOSÉ P.S. LEMOS ◽  
PATRICIO S. LETELIER

The gravitational field of a configuration formed by a static disk and a Schwarzschild black hole is analysed for two families of disks. The matter of the disks is made of counter-rotating particles with as many particles rotating to one side as to the other, in such a way that the net angular momentum is zero and the disk is static. The first family consists of peculiar disks, in the sense that they are generated by two opposite dipoles. The particles of the disk have no pressure or centrifugal support. However, when there is a central black hole, centrifugal balance in the form of counter-rotation appears. The second family is a one parameter family of self-similar disks which includes at one end a Newtonian disk, and at the other a topological defect of spacetime. The presence of the black hole impresses more rotational velocity to the particles. These two families are of infinite extent. Some interesting physical effects are studied.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Sidra Shafiq ◽  
Saqib Hussain ◽  
Muhammad Ozair ◽  
Adnan Aslam ◽  
Takasar Hussain

Abstract In this paper, geodesic motion of the charged particles in the vicinity of event horizon of Schwarzschild anti-de-Sitter black hole (BH) with topological defects has been investigated. Weakly magnetized environment is considered in the surrounding of BH which only effects the motion of the particles and doesn’t effect the geometry of the BH. Hence, particles are under the influence of gravity and electromagnetic forces. We have explored the effect of magnetic field on the trajectories of the particles and more importantly on the position of the innermost stable circular orbit. It is observed that the trajectories of the particles in the surrounding of BH are chaotic. Escape conditions of the particles under the influence of gravitomagnetic force are also discussed. Moreover, the escape velocity of particles and its different features have been investigated in the presence and absence of magnetic field. Effect of dark energy on the size of event horizon, mass of the BH and stability of the orbits of the particles have also been explored in detail. These studies can be used to estimate the power of relativistic jets originated from the vicinity of BH.


2021 ◽  
Vol 36 (26) ◽  
pp. 2150191
Author(s):  
Gao-Ming Deng ◽  
Jinbo Fan ◽  
Xinfei Li

As an intriguing topological defect, global monopole’s influence on behaviors of black holes has always been anticipated but still remains obscure. Analyzing the thermodynamics of charged Anti-de Sitter (AdS) black hole incorporating a global monopole manifests that the black hole undergoes a Van der Waals-like first-order phase transition near the critical point. This paper concentrates on further investigating the transition, aiming at clarifying how the global monopole affects the criticality and microstructure of the charged AdS black holes. As a highlight, this research is implemented by employing new state parameters other than (T, P, V) description and contributes to deeper understanding the rich critical phenomena and phase structure of black holes.


1999 ◽  
Vol 14 (05) ◽  
pp. 337-342 ◽  
Author(s):  
NARESH DADHICH

By resolving the gravitational field into electric and magnetic parts, we define an electrogravity duality transformation and discover an interesting property of the field. Under the duality transformation, a vacuum/flat space–time maps into the original space–time with a topological defect of global monopole/texture. The electrogravity-duality is thus a topological defect generating process. It turns out that all black hole solutions possess dual solutions that imbibe a global monopole.


Sign in / Sign up

Export Citation Format

Share Document