The Motion of Spinning Particles in the Spacetime of a Black Hole with a Cosmic String Topological Defect

2014 ◽  
Vol 31 (9) ◽  
pp. 090402
Author(s):  
Chu-Yu Lai ◽  
Ju-Hua Chen ◽  
Yong-Jiu Wang
1996 ◽  
Vol 05 (01) ◽  
pp. 53-63 ◽  
Author(s):  
JOSÉ P.S. LEMOS ◽  
PATRICIO S. LETELIER

The gravitational field of a configuration formed by a static disk and a Schwarzschild black hole is analysed for two families of disks. The matter of the disks is made of counter-rotating particles with as many particles rotating to one side as to the other, in such a way that the net angular momentum is zero and the disk is static. The first family consists of peculiar disks, in the sense that they are generated by two opposite dipoles. The particles of the disk have no pressure or centrifugal support. However, when there is a central black hole, centrifugal balance in the form of counter-rotation appears. The second family is a one parameter family of self-similar disks which includes at one end a Newtonian disk, and at the other a topological defect of spacetime. The presence of the black hole impresses more rotational velocity to the particles. These two families are of infinite extent. Some interesting physical effects are studied.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Sidra Shafiq ◽  
Saqib Hussain ◽  
Muhammad Ozair ◽  
Adnan Aslam ◽  
Takasar Hussain

Abstract In this paper, geodesic motion of the charged particles in the vicinity of event horizon of Schwarzschild anti-de-Sitter black hole (BH) with topological defects has been investigated. Weakly magnetized environment is considered in the surrounding of BH which only effects the motion of the particles and doesn’t effect the geometry of the BH. Hence, particles are under the influence of gravity and electromagnetic forces. We have explored the effect of magnetic field on the trajectories of the particles and more importantly on the position of the innermost stable circular orbit. It is observed that the trajectories of the particles in the surrounding of BH are chaotic. Escape conditions of the particles under the influence of gravitomagnetic force are also discussed. Moreover, the escape velocity of particles and its different features have been investigated in the presence and absence of magnetic field. Effect of dark energy on the size of event horizon, mass of the BH and stability of the orbits of the particles have also been explored in detail. These studies can be used to estimate the power of relativistic jets originated from the vicinity of BH.


2014 ◽  
Vol 54 (4) ◽  
pp. 1175-1183
Author(s):  
Chuyu Lai ◽  
Juhua Chen ◽  
Yongjiu Wang

2008 ◽  
Vol 23 (35) ◽  
pp. 3023-3030 ◽  
Author(s):  
HONGBO CHENG ◽  
YUNQI LIU

The equation of circular loops of cosmic string with time-dependent tension is studied in the Minkowski spacetime and Robertson–Walker universe. We found that, in the case where the tension depends on some power of the cosmic time, cosmic string loops with time-varying tension should not collapse to form a black hole if the power is lower than a critical value.


1998 ◽  
Vol 07 (06) ◽  
pp. 957-967 ◽  
Author(s):  
JEAN-PIERRE DE VILLIERS ◽  
VALERI FROLOV

The gravitational interaction of an infinitely long cosmic string with a Schwarzschild black hole is studied. We consider a straight string that is initially at a great distance and moving at some initial velocity v (0 < v < c) towards the black hole. The equations of motion of the string are solved numerically to obtain the dependence of the capture impact parameter on the initial velocity.


2009 ◽  
Vol 24 (25) ◽  
pp. 2025-2037 ◽  
Author(s):  
R. SINI ◽  
V. C. KURIAKOSE

We evaluate quasinormal mode frequencies for RN black hole spacetimes with cosmic string perturbed by a massless Dirac field, using Pöschl–Teller potential method. We find that only in the case of RN black hole having small charge, the effect due to cosmic string will dominate when perturbed by a negatively charged Dirac field, but if we are perturbing with positively charged Dirac field decay will be less in the case of black hole having cosmic string compared to the RN black hole without string.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Alexander Gußmann

Abstract A black hole image contains a bright ring of photons that have closely circled the black hole on their way from the source to the detector. Here, we study the photon ring of a rotating black hole which is pierced by a global hyper-light axion-type cosmic string. We show that the coupling 𝜙F$$ \overset{\sim }{F} $$ F ~ between the axion 𝜙 and the photon can give rise to a unique polarimetric structure of the photon ring. The structure emerges due to an Aharonov-Bohm type effect that leads to a change of the polarization directions of linear polarized photons when they circle the black hole. For several parameter choices, we determine concrete polarization patterns in the ring. Measuring these patterns can provide us with a way of determining the value of the coefficient of the mixed anomaly between electromagnetism and the symmetry that gave rise to the cosmic string. Finally, we briefly review a possible formation mechanism of black holes that are pierced by cosmic strings and discuss under which conditions we can expect such objects to be present as supermassive black holes in the center of galaxies.


2004 ◽  
Vol 19 (10) ◽  
pp. 1549-1557 ◽  
Author(s):  
F. ÖZDEMIR ◽  
N. ÖZDEMIR ◽  
B. T. KAYNAK

Some black hole-cosmic string models such as Reissner–Nordström, RN–de Sitter, Kerr–Newman and multi-black holes with cosmic string are given. Energy and angular momentum of a timelike particle in circular orbits in multi-black hole space–time are calculated. The geodesic equations for the timelike particles for the far region of the multi-black hole sources are calculated and small oscillations around the circular orbit obtained. It is seen that the particle's orbit precesses like the Lens–Thirring effect.


Sign in / Sign up

Export Citation Format

Share Document