scholarly journals Charged particle dynamics in the surrounding of Schwarzschild anti-de Sitter black hole with topological defect immersed in an external magnetic field

2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Sidra Shafiq ◽  
Saqib Hussain ◽  
Muhammad Ozair ◽  
Adnan Aslam ◽  
Takasar Hussain

Abstract In this paper, geodesic motion of the charged particles in the vicinity of event horizon of Schwarzschild anti-de-Sitter black hole (BH) with topological defects has been investigated. Weakly magnetized environment is considered in the surrounding of BH which only effects the motion of the particles and doesn’t effect the geometry of the BH. Hence, particles are under the influence of gravity and electromagnetic forces. We have explored the effect of magnetic field on the trajectories of the particles and more importantly on the position of the innermost stable circular orbit. It is observed that the trajectories of the particles in the surrounding of BH are chaotic. Escape conditions of the particles under the influence of gravitomagnetic force are also discussed. Moreover, the escape velocity of particles and its different features have been investigated in the presence and absence of magnetic field. Effect of dark energy on the size of event horizon, mass of the BH and stability of the orbits of the particles have also been explored in detail. These studies can be used to estimate the power of relativistic jets originated from the vicinity of BH.

2019 ◽  
Vol 28 (01) ◽  
pp. 1950013 ◽  
Author(s):  
Mustapha Azreg-Aïnou

We consider a stationary metric immersed in a uniform magnetic field and determine the general expressions for the epicyclic frequencies of charged particles. Applications to the Kerr–Newman black hole are reached of physical consequences and reveal some new effects among which are the existence of radially and vertically stable circular orbits in the region enclosed by the event horizon and the so-called “innermost” stable circular orbit (ISCO) in the plane of symmetry.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Bushra Majeed ◽  
Mubasher Jamil ◽  
Saqib Hussain

Considering the geometry of Reissner-Nordström (RN) black hole immersed in magnetic field, we have studied the dynamics of neutral and charged particles. A collision of particles in the inner stable circular orbit is considered and the conditions for the escape of colliding particles from the vicinity of black hole are given. The trajectories of the escaping particle are discussed. Also, the velocity required for this escape is calculated. It is observed that there is more than one stable region if magnetic field is present in the accretion disk of black hole, so the stability of ISCO increases in the presence of magnetic field. Effect of magnetic field on the angular motion of neutral and charged particles is observed graphically.


Author(s):  
William J Potter

Abstract The widely used Novikov-Thorne relativistic thin disc equations are only valid down to the radius of the innermost-stable circular orbit (ISCO). This leads to an undetermined boundary condition at the ISCO, known as the inner stress of the disc, which sets the luminosity of the disc at the ISCO and introduces considerable ambiguity in accurately determining the mass, spin and accretion rate of black holes from observed spectra. We resolve this ambiguity by self-consistently extending the relativistic disc solution through the ISCO to the black hole horizon by calculating the inspiral of an average disc particle subject to turbulent disc forces, using a new particle-in-disc technique. Traditionally it has been assumed that the stress at the ISCO is zero, with material plunging approximately radially into the black hole at close to the speed of light. We demonstrate that in fact the inspiral is less severe, with several (∼4 − 17) orbits completed before the horizon. This leads to a small non-zero stress and luminosity at and inside the ISCO, with a local surface temperature at the ISCO between ∼0.15 − 0.3 times the maximum surface temperature of the disc, in the case where no dynamically important net magnetic field is present. For a range of disc parameters we calculate the value of the inner stress/surface temperature, which is required when fitting relativistic thin disc models to observations. We resolve a problem in relativistic slim disc models in which turbulent heating becomes inaccurate and falls to zero inside the plunging region.


2006 ◽  
Vol 2 (S238) ◽  
pp. 367-368
Author(s):  
Keigo Fukumura ◽  
Masaaki Takahashi ◽  
Sachiko Tsuruta

AbstractWe study magnetohydrodynamic (MHD) standing shocks in ingoing plasmas in a black hole (BH) magnetosphere. We find that low or mid latitude (non-equatorial) standing MHD shocks are both physically possible, creating very hot and/or magnetized plasma regions close to the event horizon. We also investigate the effects of the poloidal magnetic field and the BH spin on the properties of shocks and show that both effects can quantitatively affect the MHD shock solutions. MHD shock formation can be a plausible mechanism for creating high energy radiation region above an accretion disk in AGNs.


2001 ◽  
Vol 16 (23) ◽  
pp. 3793-3803 ◽  
Author(s):  
WENBIAO LIU ◽  
ZHENG ZHAO

The brick-wall method put forward by 't Hooft has contributed a great deal to the understanding and calculating of the entropy of a black hole. However, there are some drawbacks in it such as little mass approximation, neglecting logarithm terms, and taking the term including L3 as a contribution of the vacuum surrounding the black hole. Moreover, the fundamental problem is why the entropy of scalar field or Dirac field surrounding a black hole is the entropy of the black hole itself. It is well known that the event horizon is the characteristic of a black hole. The entropy calculation of a black hole should be only related to its horizon. Due to this analysis, we improve the brick-wall model by taking that the entropy of a black hole is only contributed by a thin film near the event horizon. This improvement not only gives us a satisfied result, but also avoids the drawbacks in the original brick-wall method. It is found that there is an intrinsic relation between the event horizon and the entropy. We also calculate the entropy of Schwarzschild–de Sitter space–time via the improved method, which can hardly be resolved via the original model.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Monimala Mondal ◽  
Farook Rahaman ◽  
Ksh. Newton Singh

AbstractGeodesic motion has significant characteristics of space-time. We calculate the principle Lyapunov exponent (LE), which is the inverse of the instability timescale associated with this geodesics and Kolmogorov–Senai (KS) entropy for our rotating Kerr–Kiselev (KK) black hole. We have investigate the existence of stable/unstable equatorial circular orbits via LE and KS entropy for time-like and null circular geodesics. We have shown that both LE and KS entropy can be written in terms of the radial equation of innermost stable circular orbit (ISCO) for time-like circular orbit. Also, we computed the equation marginally bound circular orbit, which gives the radius (smallest real root) of marginally bound circular orbit (MBCO). We found that the null circular geodesics has larger angular frequency than time-like circular geodesics ($$Q_o > Q_{\sigma }$$ Q o > Q σ ). Thus, null-circular geodesics provides the fastest way to circulate KK black holes. Further, it is also to be noted that null circular geodesics has shortest orbital period $$(T_{photon}< T_{ISCO})$$ ( T photon < T ISCO ) among the all possible circular geodesics. Even null circular geodesics traverses fastest than any stable time-like circular geodesics other than the ISCO.


2001 ◽  
Vol 16 (11) ◽  
pp. 719-723 ◽  
Author(s):  
REN ZHAO ◽  
JUNFANG ZHANG ◽  
LICHUN ZHANG

Starting from the Klein–Gordon equation, we calculate the entropy of Schwarzschild–de Sitter black hole in non-thermal-equilibrium by using the improved brick-wall method-membrane model. When taking the proper cutoff in the obtained result, we obtain that both black hole's entropy and cosmic entropy are proportional to the areas of event horizon. We avoid the logarithmic term and stripped term in the original brick-wall method. It offers a new way of studying the entropy of the black hole in non-thermal-equilibrium.


2011 ◽  
Vol 26 (14) ◽  
pp. 999-1007 ◽  
Author(s):  
JERZY MATYJASEK ◽  
KATARZYNA ZWIERZCHOWSKA

Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon.


2018 ◽  
Vol 14 (S342) ◽  
pp. 201-204
Author(s):  
Xinwu Cao

AbstractIt is still a mystery why only a small fraction of quasars contain relativistic jets. A strong magnetic field is a necessary ingredient for jet formation. Gas falls from the Bondi radius RB nearly freely to the circularization radius Rc, and a thin accretion disk is formed within Rc We suggest that the external weak magnetic field threading interstellar medium is substantially enhanced in this region, and the magnetic field at Rc can be sufficiently strong to drive outflows from the disk if the angular velocity of the gas is low at RB. In this case, the magnetic field is efficiently dragged in the disk, because most angular momentum of the disk is removed by the outflows that lead to a significantly high radial velocity. The strong magnetic field formed in this way may accelerate jets in the region near the black hole, either by the Blandford-Payne or/and Blandford-Znajek mechanisms. If the angular velocity of the circumnuclear gas is low, the field advection in the thin disk is inefficient, and it will appear as a radio-quiet (RQ) quasar.


Author(s):  
Jaroslav Vrba ◽  
Ahmadjon Abdujabbarov ◽  
Arman Tursunov ◽  
Bobomurat Ahmedov ◽  
Zdeněk Stuchlík

Abstract We study spherically symmetric magnetically charged generic black hole solutions of general relativity coupled to non-linear electrodynamics (NED). For characteristic values of the generic spacetime parameters we give the position of horizons in dependence on the charge parameter, demonstrating separation of the black hole and no-horizon solutions, and possibility of existence of solutions containing three horizons. We show that null, weak and strong energy conditions are violated when the outer horizon is approaching the center. We study effective potentials for photons and massive test particles and location of circular photon orbits (CPO) and innermost stable circular orbit (ISCO). We show that the unstable photon orbit can become stable, leading to the possibility of photon capture which affects on silhouette of the central object. The position of ISCO approaches the horizon with increasing charge parameter q and the energy at ISCO decreases with increasing charge parameter. We investigate this phenomenon and summarize for a variety of the generic spacetime parameters the upper estimate on the spin parameter of the Kerr black which can be mimicked by the generic charged black hole solutions.


Sign in / Sign up

Export Citation Format

Share Document