Passive acoustic detection and localization of sperm whales (Physeter macrocephalus) in the tongue of the ocean

2006 ◽  
Vol 67 (11-12) ◽  
pp. 1091-1105 ◽  
Author(s):  
R.P. Morrissey ◽  
J. Ward ◽  
N. DiMarzio ◽  
S. Jarvis ◽  
D.J. Moretti
2021 ◽  
Vol 9 (4) ◽  
pp. 444
Author(s):  
Charlotte Curé ◽  
Saana Isojunno ◽  
Marije L. Siemensma ◽  
Paul J. Wensveen ◽  
Célia Buisson ◽  
...  

Controlled exposure experiments (CEEs) have demonstrated that naval pulsed active sonar (PAS) can induce costly behavioral responses in cetaceans similar to antipredator responses. New generation continuous active sonars (CAS) emit lower amplitude levels but more continuous signals. We conducted CEEs with PAS, CAS and no-sonar control on free-ranging sperm whales in Norway. Two panels blind to experimental conditions concurrently inspected acoustic-and-movement-tag data and visual observations of tagged whales and used an established severity scale (0–9) to assign scores to putative responses. Only half of the exposures elicited a response, indicating overall low responsiveness in sperm whales. Responding whales (10 of 12) showed more, and more severe responses to sonar compared to no-sonar. Moreover, the probability of response increased when whales were previously exposed to presence of predatory and/or competing killer or long-finned pilot whales. Various behavioral change types occurred over a broad range of severities (1–6) during CAS and PAS. When combining all behavioral types, the proportion of responses to CAS was significantly higher than no-sonar but not different from PAS. Responses potentially impacting vital rates i.e., with severity ≥4, were initiated at received cumulative sound exposure levels (dB re 1 μPa2 s) of 137–177 during CAS and 143–181 during PAS.


1988 ◽  
Vol 45 (10) ◽  
pp. 1736-1743 ◽  
Author(s):  
Julia Mullins ◽  
Hal Whitehead ◽  
Linda S. Weilgart

During June 1986, two male sperm whales, Physeter macrocephalus, on the Scotian Shelf were tracked by listening for their clicks with a directional hydrophone for periods of 12.5 and 7 h, respectively. Each whale travelled along the edge of the shelf at about 2 kn (3.6 km/h), and one whale, on two occasions at least, dived to the ocean floor. After about 30 min underwater, the whales spent approximately 9 min at the surface breathing. When the whales were visible at the surface, they were silent, except on one occasion when "slow clicking" (mean interclick interval of 4.6 s) was heard from Whale 2. While underwater, most of the sound production consisted of "usual clicks" (mean interclick interval 0.96 and 0.69 s for the two whales) interrupted by frequent short silences (mean durations 21.06 and 27.82 s) and occasional "creaks" (with interclick intervals less than 0.2 s) and "slow clicks." No "codas" (stereotyped patterns of clicks) were heard from these two single whales. These results are consistent with the hypotheses that "usual clicks" and "creaks" are used for echolocation and "codas" for communication.


2012 ◽  
Vol 92 (8) ◽  
pp. 1799-1808 ◽  
Author(s):  
Alexandre Gannier ◽  
Estelle Petiau ◽  
Violaine Dulau ◽  
Luke Rendell

Oceanic odontocetes rely on echolocation to forage on pelagic or benthic prey, but their feeding ecology is difficult to study. We studied sperm whale foraging dives during summer in the north-western Mediterranean, using visual and passive acoustic observations. Clicking and creaking activities were recorded during dives of focal whales, at distances <3000 m using a towed hydrophone and DAT recorder. A total of 52 sperm whales were recorded over at least one full dive cycle. Data were obtained for 156 complete dives in total, including sequences of up to nine consecutive dives. Various dive and environmental variables were entered in multiple linear regression and principal components analysis, as well as estimated mass of whales. Creak rate was 0.80 creak/minute on average, with moderate variance. Bigger whales tended to dive longer at greater depths (as suggested by ascent durations), and emitted more creaks during a dive: 20.2 creaks/dive on average for individuals <24 tons, compared to 25.6 creaks/dive for animals >24 tons of estimated mass. For individual whales, creak rates did not vary significantly with size (range 0.78–0.80 creak/minute), but decreased with time of the day, and increased for shorter foraging phases. For different dives, higher creak rates were also observed earlier in the day, and linked to shorter foraging phases and surface durations. Although the exact significance of creak emissions (i.e. foraging attempt or prey capture) is not precisely determined, creak rates may be reliably used to quantify sperm whale foraging when single animal dives can be followed acoustically.


1993 ◽  
Vol 71 (10) ◽  
pp. 1991-1996 ◽  
Author(s):  
Sean C. Smith ◽  
Hal Whitehead

The feeding success of sperm whales off the Galápagos Islands, Ecuador, was examined over 5 study years; 1985, 1987, 1988, 1989, and 1991. A total of 160 days were spent following sperm whales at sea. The defaecation rates of sperm whales were used as an indication of feeding success. The recorded acoustic click rates of sperm whales were used as an indication of aggregative and foraging behaviour. Significant variation in feeding success occurred temporally over periods of days, months, and years. Feeding success also varied spatially with geographic area. Feeding success was inversely related to sea surface temperature (SST). The foraging and associative behaviour of sperm whales also varied with feeding success, SST, and by year. Variations in the feeding success and behaviour of Galápagos sperm whales can likely be attributed to changing oceanographic conditions in the waters surrounding the Galápagos archipelago.


Sign in / Sign up

Export Citation Format

Share Document