Statistical analysis of sound level predictions in refracting and turbulent atmospheres

2022 ◽  
Vol 185 ◽  
pp. 108426
Author(s):  
Timothy Van Renterghem ◽  
Kirill V. Horoshenkov ◽  
Jordan A. Parry ◽  
Duncan P. Williams
1973 ◽  
Vol 6 (2) ◽  
pp. 111-117 ◽  
Author(s):  
W.E. Scholes ◽  
A.C. Salvidge

2015 ◽  
Vol 39 (2) ◽  
pp. 195-198 ◽  
Author(s):  
Wojciech Batko ◽  
Bartosz Przysucha

Abstract The authors focus their attention on the analysis of the probability density function of the equivalent noise level, in the context of a determination of the uncertainty of the obtained results in regard to the control of environmental acoustic hazards. In so doing, they discuss problems of correctness in the applicability of the classical normal distribution for the estimation of the expected interval value of the equivalent sound level. The authors also provide a set of procedures with respect to its derivation, based upon an assumption of the determined distribution of the measurement results. The obtained results then create the plane for the correct uncertainty calculation of the results of the determined controlled environmental acoustic hazard coefficient.


1966 ◽  
Vol 24 ◽  
pp. 188-189
Author(s):  
T. J. Deeming

If we make a set of measurements, such as narrow-band or multicolour photo-electric measurements, which are designed to improve a scheme of classification, and in particular if they are designed to extend the number of dimensions of classification, i.e. the number of classification parameters, then some important problems of analytical procedure arise. First, it is important not to reproduce the errors of the classification scheme which we are trying to improve. Second, when trying to extend the number of dimensions of classification we have little or nothing with which to test the validity of the new parameters.Problems similar to these have occurred in other areas of scientific research (notably psychology and education) and the branch of Statistics called Multivariate Analysis has been developed to deal with them. The techniques of this subject are largely unknown to astronomers, but, if carefully applied, they should at the very least ensure that the astronomer gets the maximum amount of information out of his data and does not waste his time looking for information which is not there. More optimistically, these techniques are potentially capable of indicating the number of classification parameters necessary and giving specific formulas for computing them, as well as pinpointing those particular measurements which are most crucial for determining the classification parameters.


Author(s):  
Gianluigi Botton ◽  
Gilles L'espérance

As interest for parallel EELS spectrum imaging grows in laboratories equipped with commercial spectrometers, different approaches were used in recent years by a few research groups in the development of the technique of spectrum imaging as reported in the literature. Either by controlling, with a personal computer both the microsope and the spectrometer or using more powerful workstations interfaced to conventional multichannel analysers with commercially available programs to control the microscope and the spectrometer, spectrum images can now be obtained. Work on the limits of the technique, in terms of the quantitative performance was reported, however, by the present author where a systematic study of artifacts detection limits, statistical errors as a function of desired spatial resolution and range of chemical elements to be studied in a map was carried out The aim of the present paper is to show an application of quantitative parallel EELS spectrum imaging where statistical analysis is performed at each pixel and interpretation is carried out using criteria established from the statistical analysis and variations in composition are analyzed with the help of information retreived from t/γ maps so that artifacts are avoided.


2020 ◽  
Vol 63 (8) ◽  
pp. 2597-2608
Author(s):  
Emily N. Snell ◽  
Laura W. Plexico ◽  
Aurora J. Weaver ◽  
Mary J. Sandage

Purpose The purpose of this preliminary study was to identify a vocal task that could be used as a clinical indicator of the vocal aptitude or vocal fitness required for vocally demanding occupations in a manner similar to that of the anaerobic power tests commonly used in exercise science. Performance outcomes for vocal tasks that require rapid acceleration and high force production may be useful as an indirect indicator of muscle fiber complement and bioenergetic fitness of the larynx, an organ that is difficult to study directly. Method Sixteen women (age range: 19–24 years, M age = 22 years) were consented for participation and completed the following performance measures: forced vital capacity, three adapted vocal function tasks, and the horizontal sprint test. Results Using a within-participant correlational analyses, results indicated a positive relationship between the rate of the last second of a laryngeal diadochokinesis task that was produced at a high fundamental frequency/high sound level and anaerobic power. Forced vital capacity was not correlated with any of the vocal function tasks. Conclusions These preliminary results indicate that aspects of the laryngeal diadochokinesis task produced at a high fundamental frequency and high sound level may be useful as an ecologically valid measure of vocal power ability. Quantification of vocal power ability may be useful as a vocal fitness assessment or as an outcome measure for voice rehabilitation and habilitation for patients with vocally demanding jobs.


Author(s):  
David C. Byrne ◽  
Christa L. Themann ◽  
Deanna K. Meinke ◽  
Thais C. Morata ◽  
Mark R. Stephenson

An audiologist should be the principal provider and advocate for all hearing loss prevention activities. Many audiologists equate hearing loss prevention with industrial audiology and occupational hearing conservation programs. However, an audiologist’s involvement in hearing loss prevention should not be confined to that one particular practice setting. In addition to supervising occupational programs, audiologists are uniquely qualified to raise awareness of hearing risks, organize public health campaigns, promote healthy hearing, implement intervention programs, and monitor outcomes. For example, clinical audiologists can show clients how to use inexpensive sound level meters, noise dosimeters, or phone apps to measure noise levels, and recommend appropriate hearing protection. Audiologists should identify community events that may involve hazardous exposures and propose strategies to minimize risks to hearing. Audiologists can help shape the knowledge, beliefs, motivations, attitudes, and behaviors of individuals toward self-protection. An audiologist has the education, tools, opportunity, and strategic position to facilitate or promote hearing loss surveillance and prevention services and activities. This article highlights real-world examples of the various roles and substantial contributions audiologists can make toward hearing loss prevention goals.


Sign in / Sign up

Export Citation Format

Share Document