scholarly journals X-ray absorption, X-ray diffraction and electron microscopy study of spent cobalt based catalyst in semi-commercial scale Fischer–Tropsch synthesis

2014 ◽  
Vol 479 ◽  
pp. 59-69 ◽  
Author(s):  
Nikolaos E. Tsakoumis ◽  
Roya Dehghan-Niri ◽  
Magnus Rønning ◽  
John C. Walmsley ◽  
Øyvind Borg ◽  
...  
2017 ◽  
Vol 266 ◽  
pp. 117-121
Author(s):  
Piyasak Akcaboot ◽  
Napat Kanokpornwasin ◽  
Monthida Raoarun ◽  
Patraporn Saiwattanasuk ◽  
Pinsuda Viravathana

Co-promoted Cu/ZnO catalysts were studied for Fischer-Tropsch synthesis (FTS). All catalysts were prepared by the co-precipitation method, having the mass ratio of Co:Cu:Zn=0 (unpromoted), 0.05, 0.5:1:1, and characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), including X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). From XRD and XAS, the results confirmed the phase transformation of CuO to Cu foil and Co3O4 to Co foil in Co-promoted catalysts after reduction. After FTS reaction testing, the Co-promoted catalysts showed the decrease in methanol selectivity of 15 and 1.6% for 0.05Co-Cu/ZnO and 0.5Co-Cu/ZnO, respectively, and the increase in C5-C15 selectivity during 30 h of reaction.


2008 ◽  
Vol 126 (3-4) ◽  
pp. 224-230 ◽  
Author(s):  
Øyvind Borg ◽  
John C. Walmsley ◽  
Roya Dehghan ◽  
Bjørn S. Tanem ◽  
Edd A. Blekkan ◽  
...  

2016 ◽  
Vol 18 (43) ◽  
pp. 30183-30188 ◽  
Author(s):  
H. E. du Plessis ◽  
J. P. R. de Villiers ◽  
A. Tuling ◽  
E. J. Olivier

Supported cobalt Fischer–Tropsch catalysts are characteristically nanoparticulate and the reduced SiC supported catalyst was found to contain both HCP and FCC polymorphs.


2014 ◽  
Vol 805 ◽  
pp. 678-683
Author(s):  
Ângela da Costa Nogueira ◽  
Jocielys Jovelino Rodrigues ◽  
Liliane Andrade Lima ◽  
Meiry Glaúcia Freire Rodrigues

In this study catalysts Fe/SBA-15 were prepared for Fischer-Tropsch Synthesis. SBA-15 samples were synthesized under acidic conditions using triblock copolymer Pluronic as a template and tetraethyl orthosilicate as a silica source.The molar composition was: 1.0 TEOS: 0017 P123: 8.14 HCl: 168 H2O. Fe/SBA-15 catalysts with different iron loading (15 wt. % and 20 wt. %) were prepared by wetness impregnation of relative SBA-15 with the desired amount of aqueous iron nitrate. The obtained catalyst were characterized by X ray diffraction (XDR), nitrogen adsorption-desorption and energy dispersive X-ray spectrometry (EDX). After impregnation of Fe the XRD profiles were almost unchanged and exhibited the high diffraction peaks of SBA-15 at low angles. The analysis of nitrogen adsorption-desorption was observed that the values of specific surface area decreased as the concentration of metal impregnated increased. And by the EDX analysis verified that the iron contents obtained are close to nominal levels of iron.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1324
Author(s):  
Byron Bradley Govender ◽  
Samuel Ayodele Iwarere ◽  
Deresh Ramjugernath

The influence of different catalyst cobalt loadings on the C1-C3 hydrocarbon product yields and energy consumption in plasma-catalytic Fischer-Tropsch synthesis (FTS) was investigated from the standpoint of various reactor operating conditions: pressure (0.5 to 10 MPa), current (250 to 450 mA) and inter-electrode gap (0.5 to 2 mm). This was accomplished by introducing a mullite substrate, coated with 2 wt%-Co/5 wt%-Al2O3, 6 wt%-Co/5 wt%-Al2O3 or 0 wt%-Co/5 wt%-Al2O3 (blank catalyst), into a recently developed high pressure arc discharge reactor. The blank catalyst was ineffective in synthesizing hydrocarbons. Between the blank catalyst, 2 wt%, and the 6 wt% Co catalyst, the 6 wt% improved C1-C3 hydrocarbon production at all conditions, with higher yields and relatively lower energy consumption at (i) 10 MPa at 10 s, and 2 MPa at 60 s, for the pressure variation study; (ii) 250 mA for the current variation study; and (iii) 2 mm for the inter-electrode gap variation study. The inter-electrode gap of 2 mm, using the 6 wt% Co catalyst, led to the overall highest methane, ethane, ethylene, propane and propylene yields of 22 424, 517, 101, 79 and 19 ppm, respectively, compared to 40 ppm of methane and < 1 ppm of C1-C3 hydrocarbons for the blank catalyst, while consuming 660 times less energy for the production of a mole of methane. Furthermore, the 6 wt% Co catalyst produced carbon nanotubes (CNTs), detected via transmission electron microscopy (TEM). In addition, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD) showed that the cobalt catalyst was modified by plasma treatment.


Author(s):  
Aibassov Erkin Zhakenovich ◽  
Yemelyanova Valentina Stepanovna ◽  
Schakieva Tatyana ◽  
Tussupbaev Nessipbay ◽  
Imanbekov Kylysh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document