scholarly journals The Effect of Cobalt Catalyst Loading at Very High Pressure Plasma-Catalysis in Fischer-Tropsch Synthesis

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1324
Author(s):  
Byron Bradley Govender ◽  
Samuel Ayodele Iwarere ◽  
Deresh Ramjugernath

The influence of different catalyst cobalt loadings on the C1-C3 hydrocarbon product yields and energy consumption in plasma-catalytic Fischer-Tropsch synthesis (FTS) was investigated from the standpoint of various reactor operating conditions: pressure (0.5 to 10 MPa), current (250 to 450 mA) and inter-electrode gap (0.5 to 2 mm). This was accomplished by introducing a mullite substrate, coated with 2 wt%-Co/5 wt%-Al2O3, 6 wt%-Co/5 wt%-Al2O3 or 0 wt%-Co/5 wt%-Al2O3 (blank catalyst), into a recently developed high pressure arc discharge reactor. The blank catalyst was ineffective in synthesizing hydrocarbons. Between the blank catalyst, 2 wt%, and the 6 wt% Co catalyst, the 6 wt% improved C1-C3 hydrocarbon production at all conditions, with higher yields and relatively lower energy consumption at (i) 10 MPa at 10 s, and 2 MPa at 60 s, for the pressure variation study; (ii) 250 mA for the current variation study; and (iii) 2 mm for the inter-electrode gap variation study. The inter-electrode gap of 2 mm, using the 6 wt% Co catalyst, led to the overall highest methane, ethane, ethylene, propane and propylene yields of 22 424, 517, 101, 79 and 19 ppm, respectively, compared to 40 ppm of methane and < 1 ppm of C1-C3 hydrocarbons for the blank catalyst, while consuming 660 times less energy for the production of a mole of methane. Furthermore, the 6 wt% Co catalyst produced carbon nanotubes (CNTs), detected via transmission electron microscopy (TEM). In addition, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD) showed that the cobalt catalyst was modified by plasma treatment.

2017 ◽  
Vol 2 (1) ◽  
pp. 51-61
Author(s):  
Nima Mohammadi Taher ◽  
Maedeh Mahmoudi ◽  
Seyyede Shahrzad Sajjadivand

Abstract An investigation was done to develop and characterize the alumina supported cobalt catalyst for Fischer-Tropsch Synthesis to produce biodiesel from biomass with the aim to produce alumina-supported cobalt catalysts containing 7 to 19 wt.% cobalt content. By using incipient wetness impregnation of γ-Al2O3 supports with cobalt nitrate hexahydrate with ethanol and distilled water solutions; the 14 wt.% cobalt content in catalyst was achieved. Nitrogen adsorption-desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray fluorescence (XRF), H2temperature programmed reduction (H2-TPR), temperature programmed desorption (TPD), temperature programmed oxidation (TPO) and carbon monoxide chemisorption were used for the characterization of the catalysts to attain an appropriate cobalt catalyst. In order to investigate the effect of the impregnation on the crystalline size, surface area and cobalt content, three different impregnation methods with various durations were investigated. In addition, increasing the impregnation duration increased the cobalt content and its dispersion. Based on results, positive effect of the alumina support and impregnation duration on the crystallite size, surface area, and pore diameter, reducibility of the catalyst and cobalt dispersion were investigated. Thus, cobalt catalyst for using in fixed bed reactor to produce biodiesel from biomass through Fischer-Tropsch Synthesis was prepared and characterized.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 822 ◽  
Author(s):  
James Aluha ◽  
Stéphane Gutierrez ◽  
François Gitzhofer ◽  
Nicolas Abatzoglou

A study was done on the effect of temperature and catalyst pre-treatment on CO hydrogenation over plasma-synthesized catalysts during the Fischer–Tropsch synthesis (FTS). Nanometric Co/C, Fe/C, and 50%Co-50%Fe/C catalysts with BET specific surface area of ~80 m2 g–1 were tested at a 2 MPa pressure and a gas hourly space velocity (GHSV) of 2000 cm3 h−1 g−1 of a catalyst (at STP) in hydrogen-rich FTS feed gas (H2:CO = 2.2). After pre-treatment in both H2 and CO, transmission electron microscopy (TEM) showed that the used catalysts shifted from a mono-modal particle-size distribution (mean ~11 nm) to a multi-modal distribution with a substantial increase in the smaller nanoparticles (~5 nm), which was statistically significant. Further characterization was conducted by scanning electron microscopy (SEM with EDX elemental mapping), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The average CO conversion at 500 K was 18% (Co/C), 17% (Fe/C), and 16% (Co-Fe/C); 46%, 37%, and 57% at 520 K; and 85%, 86% and 71% at 540 K respectively. The selectivity of Co/C for C5+ was ~98% with 8% gasoline, 61%, diesel and 28% wax (fractions) at 500 K; 22% gasoline, 50% diesel, and 19% wax at 520 K; and 24% gasoline, 34% diesel, and 11% wax at 540 K, besides CO2 and CH4 as by-products. Fe-containing catalysts manifested similar trends, with a poor conformity to the Anderson–Schulz–Flory (ASF) product distribution.


2018 ◽  
Vol 57 (37) ◽  
pp. 11957-11962 ◽  
Author(s):  
Ilse K. van Ravenhorst ◽  
Charlotte Vogt ◽  
Heiko Oosterbeek ◽  
Koen W. Bossers ◽  
José G. Moya-Cancino ◽  
...  

2021 ◽  
Vol 1 (1-2) ◽  
pp. 30-40
Author(s):  
R. E. Yakovenko ◽  
I. N. Zubkov ◽  
V. G. Bakun ◽  
M. R. Agliullin ◽  
A. N. Saliev ◽  
...  

The effect of the quality of various domestic commercial HZSM-5 zeolites on the properties of bifunctional cobalt catalyst represented by a composite mixture was studied in the Fischer – Tropsch synthesis. Activities and selectivities of the catalyst samples were compared. The fractional and hydrocarbon composition of the synthesis products was investigated; viscosity-temperature characteristics of the diesel fuel fraction were estimated. A promising HZSM-5 zeolite sample was selected for practical implementation of the catalytic technology.


Sign in / Sign up

Export Citation Format

Share Document