Influence of atmospheric plasma spraying on the solar photoelectro-catalytic properties of TiO2 coatings

2016 ◽  
Vol 189 ◽  
pp. 151-159 ◽  
Author(s):  
Sergi Dosta ◽  
Marco Robotti ◽  
Sergi Garcia-Segura ◽  
Enric Brillas ◽  
Irene Garcia Cano ◽  
...  
2019 ◽  
Vol 91 (8) ◽  
pp. 7-11 ◽  
Author(s):  
Monika Michalak ◽  
Leszek Łatka ◽  
Paweł Sokołowski ◽  
Andrzej Ambroziak

Atmospheric Plasma Spraying (APS) enables deposition of coatings from different materials, including those based on Al2O3 and TiO2. In this work, Al2O3 + 40 wt.% TiO2 coatings were tested. The relationships between mechanical properties, microstructure and spraying parameters (namely: spraying distance and torch scan velocity) were investigated. Commercial -45 + 5 μm powders in agglomerated as- produced state were sprayed onto the stainless steel 1.4301 substrates. The aim of the study was to determine the adhesion, microhardness and roughness of coatings but also to characterize their microstructure. It was observed that coatings sprayed from shorter distance were well melted and revealed good adhesion, but at the same time they were more porous and of lower microhardness than those deposited from the longer spraying distance.


2008 ◽  
Vol 203 (5-7) ◽  
pp. 855-861 ◽  
Author(s):  
Massimiliano Barletta ◽  
Gianluca Rubino ◽  
Stefano Guarino ◽  
Giovanni Bolelli ◽  
Luca Lusvarghi ◽  
...  

2021 ◽  
Author(s):  
Maximilian Grimm ◽  
Rico Drehmann ◽  
Thomas Lampke ◽  
Susan Conze ◽  
Lutz-Michael Berger

Abstract This study investigates the microstructure and hardness of coatings produced by atmospheric plasma spraying using a commercial (Al,Cr)2O3 solid solution (ss) powder blended with various amounts of TiO2. The microstructures were analyzed using SEM, EDS, and XRD measurements. It was shown that blending with TiO2 reduces porosity and defect density while increasing deposition efficiency and microhardness. Small amounts of Ti in ss (Al,Cr)2O3 splats were detected in coatings prepared from blends with higher TiO2 content. Variations in aluminum and chromium content were also observed.


2011 ◽  
Vol 205 ◽  
pp. S229-S231 ◽  
Author(s):  
Maryamossadat Bozorgtabar ◽  
Mohammadreza Rahimipour ◽  
Mehdi Salehi ◽  
Mohammadreza Jafarpour

2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Zi-ang Jin ◽  
Jian-long Ma ◽  
Li-na Zhu ◽  
Hai-dou Wang ◽  
Guo-lu Li ◽  
...  

Abstract Plasma-sprayed ceramic coatings have been widely used in friction and wear protection of mechanical parts. In this paper, the nanostructured Al2O3–13 wt% TiO2 coatings were prepared by high-efficiency supersonic plasma spraying (HESP) and atmospheric plasma spraying (APS), respectively. The surface and section morphology of the coatings were observed by scanning electron microscopy (SEM). The phase composition of the coatings was analyzed by X-ray diffraction (XRD). The dry sliding friction properties of the coatings were tested on UMT-3 friction and wear testing machine. The results show that after plasma spraying, a large amount of γ-Al2O3 phase appears, while the TiO2 phase almost disappears in the coatings; compared with APS, the coatings sprayed by HESP have fewer defects and better coating quality; under dry friction condition, the steady-state friction coefficient of the coatings sprayed by HESP and APS all decreases with the increase of load, and the wear volume all increases with the increase of load. When the load is more than 40 N, wear volume of the coatings sprayed by APS is basically twice that of HESP; the wear mechanism of the coatings sprayed by HESP is the laminar cracking, peeling off and the adhesive wear.


Tribologia ◽  
2019 ◽  
Vol 286 (4) ◽  
pp. 63-71
Author(s):  
Aneta NIEMIEC ◽  
Monika MICHALAK ◽  
Leszek ŁATKA ◽  
Paweł SOKOŁOWSKI

In this paper, the results of tribological, microscopic and mechanical research of Al2O3 and Al2O3 + 40 wt.% TiO2 coatings manufactured by atmospheric plasma spraying (APS) were presented. The feedstock materials were Al2O3 (Metco 6103, Oerlikon Metco) and Al2O3 + 40 wt.% TiO2 (Metco 131VF, Oerlikon Metco) powders with the average grain size of 30 μm. The stainless steel (X5CrNi18-10) coupons had a diameter equal to 25 mm and 2 mm of thickness. The morphology and microstructure of obtained coatings were tested by scanning electron microscope (SEM). Then adhesion tests and tribological examinations by ball-on-disc (BoD) mode in technical dry friction conditions were carried out. During BoD testing, the load of 5 N was used. It was concluded that the Al2O3 coating was characterized by higher wear resistance and microhardness, but, at the same time, it was of lower fracture toughness than the Al2O3 + 40 wt.% TiO2 coating.


Sign in / Sign up

Export Citation Format

Share Document