Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China

2013 ◽  
Vol 107 ◽  
pp. 384-393 ◽  
Author(s):  
Tao Pan ◽  
Shaohong Wu ◽  
Erfu Dai ◽  
Yujie Liu
2021 ◽  
Author(s):  
Yanghang Ren ◽  
Kun Yang ◽  
Han Wang

<p>As region that is highly sensitive to global climate change, the Tibetan Plateau (TP) experiences an intra-seasonal soil water deficient due to the reduced precipitation during the South Asia monsoon (SAM) break. Few studies have investigated the impact of the SAM break on TP ecological processes, although a number of studies have explored the effects of inter-annual and decadal climate variability. In this study, the response of vegetation activity to the SAM break was investigated. The data used are: (1) soil moisture from in situ, satellite remote sensing and data assimilation; and (2) the Normalized Difference Vegetation Index (NDVI) and Solar-Induced chlorophyll Fluorescence (SIF). We found that in the region impacted by SAM break, which is distributed in the central-eastern part of TP, photosynthesis become more active during the SAM break. And temporal variability in the photosynthesis of this region is controlled mainly by solar radiation variability and has little sensitivity to soil moisture. We adopted a diagnostic process-based modeling approach to examine the causes of enhanced plant activity during the SAM break on the central-eastern TP. Our analysis indicates that active photosynthetic behavior in the reduced precipitation is stimulated by increases in solar radiation absorbed and temperature. This study highlights the importance of sub-seasonal climate variability for characterizing the relationship between vegetation and climate.</p>


2015 ◽  
Vol 36 (6) ◽  
pp. 2633-2643 ◽  
Author(s):  
Qinglong You ◽  
Jinzhong Min ◽  
Yang Jiao ◽  
Mika Sillanpää ◽  
Shichang Kang

2019 ◽  
Vol 4 ◽  
pp. e00094
Author(s):  
Prince Junior Asilevi ◽  
Emmanuel Quansah ◽  
Leonard Kofitse Amekudzi ◽  
Thompson Annor ◽  
Nana Ama Browne Klutse

Author(s):  
Guoning Wan ◽  
Meixue Yang ◽  
Zhaochen Liu ◽  
Xuejia Wang ◽  
Xiaowen Liang

The Tibetan Plateau(TP) is known as ‘the water tower of Asian’, its precipitation variation play an important role in the eco-hydrological processes and water resources regimes. based on the monthly mean precipitation data of 65 meteorological stations over the Tibetan Plateau and the surrounding areas from 1961-2015,variations, trends and temporal-spatial distribution were analyzed, furthermore, the possible reasons were also discussed preliminarily. The main results are summarized as follows: the annual mean precipitation in the TP is 465.54mm during 1961-2015, among four seasons, the precipitation in summer accounts for 60.1% of the annual precipitation, the precipitation in summer half year (May.- Oct.) accounts for 91.0% while that in winter half year (Nov.- Apr.) only accounts for 9.0%; During 1961-2015, the annual precipitation variability is 0.45mm/a and the seasonal precipitation variability is 0.31mm/a, 0.13mm/a, -0.04mm/a and 0.04mm/a in spring, summer, autumn and winter respectively on the TP; The spatial distribution of precipitation can be summarized as decreasing from southeast to northwest in the TP, the trend of precipitation is decreasing with the increase of altitude, but the correlation is not significant. The rising of air temperature and land cover changes may cause the precipitation by changing the hydrologic cycle and energy budget, furthermore, different pattern of atmospheric circulation can also influence on precipitation variability in different regions.


Sign in / Sign up

Export Citation Format

Share Document