The South Asia Monsoon Break Promotes Grass Growth on the Tibetan Plateau

Author(s):  
Yanghang Ren ◽  
Kun Yang ◽  
Han Wang

<p>As region that is highly sensitive to global climate change, the Tibetan Plateau (TP) experiences an intra-seasonal soil water deficient due to the reduced precipitation during the South Asia monsoon (SAM) break. Few studies have investigated the impact of the SAM break on TP ecological processes, although a number of studies have explored the effects of inter-annual and decadal climate variability. In this study, the response of vegetation activity to the SAM break was investigated. The data used are: (1) soil moisture from in situ, satellite remote sensing and data assimilation; and (2) the Normalized Difference Vegetation Index (NDVI) and Solar-Induced chlorophyll Fluorescence (SIF). We found that in the region impacted by SAM break, which is distributed in the central-eastern part of TP, photosynthesis become more active during the SAM break. And temporal variability in the photosynthesis of this region is controlled mainly by solar radiation variability and has little sensitivity to soil moisture. We adopted a diagnostic process-based modeling approach to examine the causes of enhanced plant activity during the SAM break on the central-eastern TP. Our analysis indicates that active photosynthetic behavior in the reduced precipitation is stimulated by increases in solar radiation absorbed and temperature. This study highlights the importance of sub-seasonal climate variability for characterizing the relationship between vegetation and climate.</p>

2021 ◽  
Vol 126 (3) ◽  
Author(s):  
Yanghang Ren ◽  
Kun Yang ◽  
Han Wang ◽  
Long Zhao ◽  
Yingying Chen ◽  
...  

2017 ◽  
Vol 30 (22) ◽  
pp. 8973-8985 ◽  
Author(s):  
Xiaoyang Chen ◽  
Qinglong You

The onset of the South Asian summer monsoon (SASM) indicates the beginning of the rainy season in the South Asia region. It is not only critical for the local agriculture and animal husbandry but also important for water and life security. Precipitation in the early rainy season (May) increases rapidly and has a large interannual variability, especially in the Tibetan Plateau (TP) region. One of the starting mechanisms of the monsoon system is the land–sea thermal contrast (LSTC) between the Indian Ocean (IO) and South Asia region. Therefore, the IO can be considered as a crucial factor for the intensity of the monsoon system, as well as the TP precipitation. In this study, the relationships between IO sea surface temperature (SST) and TP precipitation on the interannual time scale are investigated. Correlation maps show that IO SST variability contains a portion that is independent from the tropical Pacific Ocean SST and is negatively correlated with the TP precipitation. Here the authors define an LSTC index to determine the thermal condition over the IO and South Asia region. The SASM reveals an out-of-phase relationship with LSTC between land and ocean, which means it would be suppressed by the enhanced LSTC. The daily data are used to further analyze the relationship between the SASM and TP precipitation in detail. Results show that the anomalous TP precipitation in May is mainly caused by the Bay of Bengal monsoon and that the Indian monsoon is responsible for the TP precipitation in June. More specifically, warmer SST enlarges the LSTC between the IO and South Asia region. The SASM is weaker than the mean state, resulting in less precipitation over the TP. In negative years the opposite occurs.


2020 ◽  
Author(s):  
Emma Barton ◽  
Christopher Taylor ◽  
Cornelia Klein ◽  
Phil Harris

<p>The Tibetan Plateau is the highest and most extensive plateau in the world, profoundly affecting climate and weather in the region. Due to its average elevation of more than 4000m, provides a strong thermal and dynamical forcing in the mid-troposphere during the summer months, fostering the frequent development of intense storms. Mesoscale convective systems (MCSs) are known to be associated with particularly extreme rainfall events and contribute up to ~60% of rainfall over the Tibetan Plateau (TP) and adjacent areas. In particular, MCSs that form on the TP may move off and bring heavy rain and flooding to downstream parts of China, affecting millions of people. A better understanding of the processes that impact MCS genesis over the TP could contribute to improved forecasting of these extreme events. Furthermore, there is strong evidence for accelerated climate warming on the TP, which may affect convection and makes the identification of factors for MCS development even more important.</p><p>Previous work in the Sahel has shown that mesoscale soil moisture patterns can influence the initiation of new MCSs, however the relationship has yet to be investigated for the more hydrologically and topographically complex TP. In this study we investigate the impact of mesoscale soil moisture features on convective initiation over the TP during the monsoon season (May – September) using satellite imagery. Convective clouds are identified using the Fengyun-2 cloud top temperature product. Fengyun-2 is a series of geostationary satellites that provide hourly data, allowing us to track systems as they evolve. Land surface temperature anomalies are used as a proxy to map pre-storm mesoscale soil moisture patterns.</p><p>Despite the presence of complex topography, we identify a tendency for MCS initiations to occur in the vicinity of mesoscale soil moisture gradients. Our results suggest that improved representation of land-atmosphere coupling on the TP within weather and climate models could impact the entire region.</p>


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 307
Author(s):  
Chi Zhang ◽  
Naixia Mou ◽  
Jiqiang Niu ◽  
Lingxian Zhang ◽  
Feng Liu

Changes in snow cover over the Tibetan Plateau (TP) have a significant impact on agriculture, hydrology, and ecological environment of surrounding areas. This study investigates the spatio-temporal pattern of snow depth (SD) and snow cover days (SCD), as well as the impact of temperature and precipitation on snow cover over TP from 1979 to 2018 by using the ERA5 reanalysis dataset, and uses the Mann–Kendall test for significance. The results indicate that (1) the average annual SD and SCD in the southern and western edge areas of TP are relatively high, reaching 10 cm and 120 d or more, respectively. (2) In the past 40 years, SD (s = 0.04 cm decade−1, p = 0.81) and SCD (s = −2.3 d decade−1, p = 0.10) over TP did not change significantly. (3) The positive feedback effect of precipitation is the main factor affecting SD, while the negative feedback effect of temperature is the main factor affecting SCD. This study improves the understanding of snow cover change and is conducive to the further study of climate change on TP.


2018 ◽  
Vol 18 (10) ◽  
pp. 7329-7343 ◽  
Author(s):  
Jiming Li ◽  
Qiaoyi Lv ◽  
Bida Jian ◽  
Min Zhang ◽  
Chuanfeng Zhao ◽  
...  

Abstract. Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007–2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into account in the parameterization of decorrelation length scale L in order to further improve the calculation of the radiative budget and the prediction of climate change over the TP in the atmospheric models.


2017 ◽  
Vol 56 (4) ◽  
pp. 230-239 ◽  
Author(s):  
Lingjing Zhu ◽  
Jiming Jin ◽  
Xin Liu ◽  
Lei Tian ◽  
Qunhui Zhang

2012 ◽  
Vol 25 (20) ◽  
pp. 6930-6941 ◽  
Author(s):  
Xia Qu ◽  
Gang Huang

Abstract The tropical Indian Ocean (TIO)’s influence on the South Asia high (SAH)’s intensity experiences a decadal change in the late 1970s; after (before) the decadal shift, the influence is significant (insignificant). The present study investigates the role of tropospheric temperature in relaying the impact of sea surface temperature (SST) to the SAH and the change in the TIO’s influence. During the two epochs, the local tropospheric temperature responses to the TIO warming are distinct—more significant during the second epoch. It is inferred that this change may be responsible for the strengthening of the TIO’s influence on the SAH. Encouragingly, the ensemble simulations accurately capture the time of the decadal change, indicating that the enhanced influence is attributed to the SST forcing. There are two possible reasons for the change in the TIO–SAH relationship. The first reason is the change in the locations of the SST anomalies in the TIO. During the second epoch, positive SST anomalies lie in the Indian Ocean warm pool. Through the background vigorous convection and moist adjustment, the SST anomalies affect largely the tropospheric temperature and thus the SAH. The second reason is the decadal change in mean SST and the SST variability. During the recent decades, both the background SST and the variability of the TIO SST increase, which enhance the influence of the SST anomalies on the atmosphere. The influence of the remote oceanic forcing on the enhanced TIO–SAH relationship and its comparison with the contribution of the TIO SST are also discussed.


Sign in / Sign up

Export Citation Format

Share Document