Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study

2014 ◽  
Vol 132 ◽  
pp. 66-73 ◽  
Author(s):  
Roberto Turconi ◽  
Davide Tonini ◽  
Christian F.B. Nielsen ◽  
Christian G. Simonsen ◽  
Thomas Astrup
Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2472
Author(s):  
Karel Struhala ◽  
Milan Ostrý

Contemporary research stresses the need to reduce mankind’s environmental impacts and achieve sustainability. One of the keys to this is the construction sector. New buildings have to comply with strict limits regarding resource consumption (energy, water use, etc.). However, they make up only a fraction of the existing building stock. Renovations of existing buildings are therefore essential for the reduction of the environmental impacts in the construction sector. This paper illustrates the situation using a case study of a rural terraced house in a village near Brno, Czech Republic. It compares the life-cycle assessment (LCA) of the original house and its proposed renovation as well as demolition followed by new construction. The LCA covers both the initial embodied environmental impacts (EEIs) and the 60-year operation of the house with several variants of energy sources. The results show that the proposed renovation would reduce overall environmental impacts (OEIs) of the house by up to 90% and the demolition and new construction by up to 93% depending on the selected energy sources. As such, the results confirm the importance of renovations and the installation of environmentally-friendly energy sources for achieving sustainability in the construction sector. They also show the desirability of the replacement of inefficient old buildings by new construction in specific cases.


2021 ◽  
Vol 13 (17) ◽  
pp. 9625
Author(s):  
Ambroise Lachat ◽  
Konstantinos Mantalovas ◽  
Tiffany Desbois ◽  
Oumaya Yazoghli-Marzouk ◽  
Anne-Sophie Colas ◽  
...  

The demolition of buildings, apart from being energy intensive and disruptive, inevitably produces construction and demolition waste (C&Dw). Unfortunately, even today, the majority of this waste ends up underexploited and not considered as valuable resources to be re-circulated into a closed/open loop process under the umbrella of circular economy (CE). Considering the amount of virgin aggregates needed in civil engineering applications, C&Dw can act as sustainable catalyst towards the preservation of natural resources and the shift towards a CE. This study completes current research by presenting a life cycle inventory compilation and life cycle assessment case study of two buildings in France. The quantification of the end-of-life environmental impacts of the two buildings and subsequently the environmental impacts of recycled aggregates production from C&Dw was realized using the framework of life cycle assessment (LCA). The results indicate that the transport of waste, its treatment, and especially asbestos’ treatment are the most impactful phases. For example, in the case study of the first building, transport and treatment of waste reached 35% of the total impact for global warming. Careful, proactive, and strategic treatment, geolocation, and transport planning is recommended for the involved stakeholders and decision makers in order to ensure minimal sustainability implications during the implementation of CE approaches for C&Dw.


2017 ◽  
Vol 140 ◽  
pp. 1204-1216 ◽  
Author(s):  
Elena Maria Iannicelli-Zubiani ◽  
Martina Irene Giani ◽  
Francesca Recanati ◽  
Giovanni Dotelli ◽  
Stefano Puricelli ◽  
...  

2017 ◽  
Vol 144 ◽  
pp. 266-278 ◽  
Author(s):  
Hongbo Liu ◽  
Xinghua Wang ◽  
Jiangye Yang ◽  
Xia Zhou ◽  
Yunfeng Liu

2021 ◽  
Vol 13 (21) ◽  
pp. 11682
Author(s):  
Martin Nwodo ◽  
Chimay Anumba

The relevance of exergy to the life cycle assessment (LCA) of buildings has been studied regarding its potential to solve certain challenges in LCA, such as the characterization and valuation, accuracy of resource use, and interpretation and comparison of results. However, this potential has not been properly investigated using case studies. This study develops an exergy-based LCA method and applies it to three case-study buildings to explore its benefits. The results provide evidence that the theoretical benefits of exergy-based LCA as against a conventional LCA can be achieved. These include characterization and valuation benefits, accuracy, and enabling the comparison of environmental impacts. With the results of the exergy-based LCA method in standard metrics, there is now a mechanism for the competitive benchmarking of building sustainability assessments. It is concluded that the exergy-based life cycle assessment method has the potential to solve the characterization and valuation problems in the conventional life-cycle assessment of buildings, with local and global significance.


Sign in / Sign up

Export Citation Format

Share Document