Working zone for a least-squares support vector machine for modeling polymer electrolyte fuel cell voltage

2020 ◽  
pp. 116191
Author(s):  
Wei Zou ◽  
Dieter Froning ◽  
Yan Shi ◽  
Werner Lehnert
Author(s):  
Akimitsu Ishihara ◽  
Shigenori Mitsushima ◽  
Nobuyuki Kamiya ◽  
Ken-Ichiro Ota

An exergy (available energy) analysis has been conducted on a typical polymer electrolyte fuel cell (PEFC) system using methanol. The material balance and enthalpy balance were calculated for the PEFC system using methanol steam reforming, and the exergy flow was obtained. Based on these results, the exergy loss in each unit was obtained, and the difference between the enthalpy and exergy was discussed. The exergy loss in this system was calculated to be 178kJ/mole MeOH for the steam reforming process of methanol. Although the enthalpy efficiency approached unity as the recovery rate of the waste heat from the cell approached unity, the exergy efficiency remained around 0.45 since the cell’s operating temperature of 80°C is low. It was also found that the cell voltage should exceed 0.82V in order to obtain the exergy efficiency of 0.5 or higher. A direct methanol fuel cell (DMFC) was analyzed using the exergy and compared with the methanol reforming PEFC. In order to obtain the exergy efficiency higher than that of PEFC with steam reforming, the cell voltage of the DMFC should be 0.48V or greater at the current density of 600mA/cm2.


Author(s):  
Yun Wang ◽  
Xiaoguang Yang

This paper seeks to develop 3D dynamic models for polymer electrolyte fuel cells (PEFCs) and hydrogen tanks, respectively. The dynamic model of PEFCs consists of multiple layers of a single PEFC and couples the various dynamic mechanisms in fuel cells, such as electrochemical double-layer discharging/charging, species transport, heat transfer, and membrane water uptake. The one of hydrogen tanks includes a 3D description of the hydride kinetics coupled with mass/heat transport in the hydrogen tank. Transient of fuel cell during step change in current is simulated. Dynamic responses of the cell voltage and heat generation rate are discussed. Hydrogen absorption process in the tank is considered. Temperature, reaction rate and heat rejection in the fuel tank are presented. Efforts are also made to discuss the coupling of these two systems in practice and associated issues.


Author(s):  
Toyoaki Matsuura ◽  
Jason B. Siegel ◽  
Jixin Chen ◽  
Anna G. Stefanopoulou

Dead-ended anode (DEA) operation of Polymer Electrolyte Fuel Cell (PEFC) can simplify the fuel cell auxiliary and reduce system cost, however durability and lifetime in this operating mode requires further study. In this work, we investigate the electrode and membrane degradations of one 50 cm2 active area fuel cell under DEA operation using a combination of post-mortem evaluation and in-situ performance evaluation protocol. We experimentally identify multiple degradation patterns using a cell which we have previously modeled and experimentally verified the spatio-temporal patterns associated with the anode water flooding and nitrogen blanketing. The change in cell voltage and internal resistance during operation and ex situ Scanning Electron Microscope (SEM) images of aged electrode/membrane are analysed to determine and characterize the degradation of the membrane electrode assembly (MEA). Chemical degradations including carbon corrosion in the catalyst layer and membrane decomposition are found after operating the cell with a DEA. Mechanical degradations including membrane delamination are also observed. Unique features of DEA operation including fuel starvation/nitrogen blanketing in the anode and uneven local water/current distribution, are considered as culprits for degradation.


2009 ◽  
Vol 35 (2) ◽  
pp. 214-219 ◽  
Author(s):  
Xue-Song WANG ◽  
Xi-Lan TIAN ◽  
Yu-Hu CHENG ◽  
Jian-Qiang YI

1996 ◽  
Author(s):  
V A Paganin ◽  
E A Ticianelli ◽  
E R Gonzalez

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shengpu Li ◽  
Yize Sun

Ink transfer rate (ITR) is a reference index to measure the quality of 3D additive printing. In this study, an ink transfer rate prediction model is proposed by applying the least squares support vector machine (LSSVM). In addition, enhanced garden balsam optimization (EGBO) is used for selection and optimization of hyperparameters that are embedded in the LSSVM model. 102 sets of experimental sample data have been collected from the production line to train and test the hybrid prediction model. Experimental results show that the coefficient of determination (R2) for the introduced model is equal to 0.8476, the root-mean-square error (RMSE) is 6.6 × 10 (−3), and the mean absolute percentage error (MAPE) is 1.6502 × 10 (−3) for the ink transfer rate of 3D additive printing.


Sign in / Sign up

Export Citation Format

Share Document