Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change

2021 ◽  
Vol 302 ◽  
pp. 117569
Author(s):  
Zhongjie Li ◽  
Xiaomeng Jiang ◽  
Peilun Yin ◽  
Lihua Tang ◽  
Hao Wu ◽  
...  
2012 ◽  
Vol 602-604 ◽  
pp. 435-440 ◽  
Author(s):  
Na Li ◽  
Li Xiang ◽  
Pei Zhao

The effect of antimony on the structure, texture and magnetic properties of high efficiency non-oriented electrical steel were investigated. The results showed that antimony played an important role on inhibiting the grain growth and enhancing the fraction of favorable texture in the annealed steels. With the increase of antimony content, core loss of specimens monotonously increased and the magnetic flux density increased firstly and then decreased. The magnetic properties of specimen results showed that the magnetic flux density in the steel with 0.12% antimony reached the maximum value, while the core loss didn’t increase obviously. However, when the antimony content in steel reached 0.22%, the magnetic properties deteriorated significantly. This is maybe that the addition of antimony in steels inhibited the development of {111} texture content and increased the intensity of Goss and {100} texture on the grain boundary.


2012 ◽  
Vol 260-261 ◽  
pp. 559-564 ◽  
Author(s):  
Jeeng Min Ling ◽  
Tajuddin Nur

An electrical machine is constructed with some holes or axial hollows in the rotor core for special purpose. The effects of axial hole in the proposed Inset Permanent Magnet Machine (Inset PMSM) with eight radial poles are analyzed by the magnetic flux density in air gap. The characteristics associated with magnetic flux density of every magnet poles in the air gap, magnetic flux losses in the rotor teeth, density magnetic flux in the rotor core surface and torque of the machine are also investigated and compared. Results show small direct reactance and less area in the proposed axial channel rotor core compared with the convention Inset PMSM. It imply to a lighter weight and high efficiency machine design. The finite element simulation shows the magnetic flux density per pole in air gap of the proposed rotor structure remain constant or may be a little bit drop compared with the conventional machine.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


Sign in / Sign up

Export Citation Format

Share Document