scholarly journals Customized data center cooling system operating at significant outdoor temperature fluctuations

2022 ◽  
Vol 306 ◽  
pp. 117975
Author(s):  
Mateusz Borkowski ◽  
Adam Krzysztof Piłat
2019 ◽  
Vol 1304 ◽  
pp. 012022
Author(s):  
Jianwen Huang ◽  
Cheng Chen ◽  
Guiyang Guo ◽  
Zhang Zhang ◽  
Zhen Li

Author(s):  
James W. VanGilder ◽  
Roger R. Schmidt

The maximum equipment power density (e.g. in power/rack or power/area) that may be deployed in a typical raised-floor data center is limited by perforated tile airflow. In the design of a data center cooling system, a simple estimate of mean airflow per perforated tile is typically made based on the number of CRAC’s and number of perforated tiles (and possibly a leakage airflow estimate). However, in practice, many perforated tiles may deliver substantially more or less than the mean, resulting in, at best, inefficiencies and, at worst, equipment failure due to inadequate cooling. Consequently, the data center designer needs to estimate the magnitude of variations in perforated tile airflow prior to construction or renovation. In this paper, over 240 CFD models are analyzed to determine the impact of data-center design parameters on perforated tile airflow uniformity. The CFD models are based on actual data center floor plans and the CFD model is verified by comparison to experimental test data. Perforated tile type and the presence of plenum obstructions have the greatest potential influence on airflow uniformity. Floor plan, plenum depth, and airflow leakage rate have modest effect on uniformity and total airflow rate (or average plenum pressure) has virtually no effect. Good uniformity may be realized by using more restrictive (e.g. 25%-open) perforated tiles, minimizing obstructions and leakage airflow, using deeper plenums, and using rectangular floor plans with standard hot aisle/cold aisle arrangements.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Amip J. Shah ◽  
Van P. Carey ◽  
Cullen E. Bash ◽  
Chandrakant D. Patel

The modeling of recirculation patterns in air-cooled data centers is of interest to ensure adequate thermal management of computer racks at increased heat densities. Most metrics that describe recirculation are based exclusively on temperature inside the data center, and therefore fail to provide adequate information regarding the energy efficiency of the thermal infrastructure. This paper addresses this limitation through an exergy analysis of the data center thermal management system. The approach recognizes that the mixing of hot and cold streams in the data center airspace is an irreversible process and must therefore lead to a loss of exergy. Experimental validation in a test data center confirms that such an exergy-based characterization in the cold aisle reflects the same recirculation trends as suggested by traditional temperature-based metrics. Further, by extending the exergy-based model to include irreversibilities from other components of the thermal architecture, it becomes possible to quantify the amount of available energy supplied to the cooling system that is being utilized for thermal management purposes. The energy efficiency of the entire data center cooling system can then be collapsed into the single metric of net exergy loss. When evaluated against a ground state of the external ambience, this metric enables an estimate of how much of the energy emitted into the environment could potentially be harnessed in the form of useful work. Thus, this paper successfully demonstrates that the proposed exergy-based approach can provide a foundation upon which the data center cooling system can be simultaneously evaluated for thermal manageability and energy efficiency.


Author(s):  
Aaron P. Wemhoff ◽  
Faisal Ahmed

Abstract Physics-based modeling aids in designing efficient data center power and cooling systems. These systems have traditionally been modeled independently under the assumption that the inherent coupling of effects between the systems has negligible impact. This study tests the assumption through uncertainty quantification of models for a typical 300 kW data center supplied through either an AC-based or DC-based power distribution system. A novel calculation scheme is introduced that couples the calculations of these two systems to estimate the resultant impact on predicted Power Usage Effectiveness (PUE), Computer Room Air Conditioning (CRAC) return temperature, total system power requirement, and system power loss values. A two-sample z-test for comparing means is used to test for statistical significance with 95% confidence. The power distribution component efficiencies are calibrated to available published and experimental data. The predictions for a typical data center with an AC-based system suggest that the coupling of system calculations results in statistically significant differences for the cooling system PUE, the overall PUE, the CRAC return air temperature, and total electrical losses. However, none of the tested metrics are statistically significant for a DC-based system. The predictions also suggest that a DC-based system provides statistically significant lower overall PUE and electrical losses compared to the AC-based system, but only when coupled calculations are used. These results indicate that the coupled calculations impact predicted general energy efficiency metrics and enable statistically significant conclusions when comparing different data center cooling and power distribution strategies.


Author(s):  
David Okposio ◽  
A. G. Agwu Nnanna ◽  
Harvey Abramowitz

Abstract The cooling effect of evaporative cooling systems is well documented in literature. Evaporative cooling however introduces humidity into the cooled space, which is unsuitable for data centers. Desiccants (liquid, solid or composites) adsorb moisture from the cooled air to control humidity and is regenerated using waste heat from the data center. This work is an experimental and theoretical investigation of the use of desiccant assisted evaporative cooling for data center cooling according to ASHRAE thermal guideline TC 9.9 . The thickness of the cooling pads is varied with specific surface area, velocity of air through the pad measured, the product of the air velocity and surface area yields the volumetric flowrate of the air, the water flow rate varied as well. The configuration is such that the rotary desiccant wheel (impregnated with silica gel) comes after the evaporative cooler. A novel water recovery system using the Peltier effect is proposed to recover moisture from the return air stream thereby optimizing the water consumption of evaporative cooling technology and providing suitable air quality for data center cooling.


Sign in / Sign up

Export Citation Format

Share Document