Novel analytic method of membrane electrode assembly parameters for fuel cell consistency evaluation by micro-current excitation

2022 ◽  
Vol 306 ◽  
pp. 118068
Author(s):  
Peng Ren ◽  
Pucheng Pei ◽  
Dongfang Chen ◽  
Yuehua Li ◽  
Ziyao Wu ◽  
...  
Author(s):  
Imen Fouzaï ◽  
Solène Gentil ◽  
Victor Costa Bassetto ◽  
Wanderson Oliveira Silva ◽  
Raddaoui Maher ◽  
...  

A critical overview of MEA fabrication techniques is given focusing on the formation of triple phase boundaries, known for increasing PEMFC performances. Print-light-synthesis is a new emerging technology to achieve nanostructred MEA.


Author(s):  
Jonghyun Hyun ◽  
Seok-Hwan Yang ◽  
Gisu Doo ◽  
Sungyu Choi ◽  
Dong-Hyun Lee ◽  
...  

The durability of the membrane electrode assembly (MEA) is one of the important requirements for the successful commercialization of anion exchange membrane fuel cells (AEMFCs). While chemical stabilities of the...


Author(s):  
C. C. Kuo ◽  
W. E. Lear ◽  
J. H. Fletcher ◽  
O. D. Crisalle

A constructive critique and a suite of proposed improvements for a recent one-dimensional semianalytical model of a direct methanol fuel cell are presented for the purpose of improving the predictive ability of the modeling approach. The model produces a polarization curve for a fuel cell system comprised of a single membrane-electrode assembly, based on a semianalytical one-dimensional solution of the steady-state methanol concentration profile across relevant layers of the membrane electrode assembly. The first improvement proposed is a more precise numerical solution method for an implicit equation that describes the overall current density, leading to better convergence properties. A second improvement is a new technique for identifying the maximum achievable current density, an important piece of information necessary to avoid divergence of the implicit-equation solver. Third, a modeling improvement is introduced through the adoption of a linear ion-conductivity model that enhances the ability to better match experimental polarization-curve data at high current densities. Fourth, a systematic method is advanced for extracting anodic and cathodic transfer-coefficient parameters from experimental data via a least-squares regression procedure, eliminating a potentially significant parameter estimation error. Finally, this study determines that the methanol concentration boundary condition imposed on the membrane side of the membrane-cathode interface plays a critical role in the model’s ability to predict the limiting current density. Furthermore, the study argues for the need to carry out additional experimental work to identify more meaningful boundary concentration values realized by the cell.


2009 ◽  
Vol 30 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Mia Kim ◽  
Moon Sik Hyun ◽  
Geoffrey M. Gadd ◽  
Gwang Tae Kim ◽  
Sang‐Joon Lee ◽  
...  

2018 ◽  
Vol 778 ◽  
pp. 275-282
Author(s):  
Noaman Khan ◽  
Saim Saher ◽  
Xuan Shi ◽  
Muhammad Noman ◽  
Mujahid Wasim Durani ◽  
...  

Highly porous ZIF-67 (Zeolitic imidazole framework) has a conductive crystalline metal organic framework (MOF) structure which was served as a precursor and template for the preparation of nitrogen-doped carbon nanotubes (NCNTs) electrocatalysts. As a first step, the chloroplatinic acid, a platinum (Pt) precursor was infiltrated in ZIF-67 with a precise amount to obtain 0.12 mg.cm-2 Pt loading. Later, the infiltrated structure was calcined at 700°C in Ar:H2 (90:10 vol%) gas mixture. Multi-walled nitrogen-doped carbon nanotubes were grown on the surface of ZIF-67 crystals following thermal activation at 700°C. The resulting PtCo-NCNTs electrocatalysts were deposited on Nafion-212 solid electrolyte membrane by spray technique to study the oxygen reduction reaction (ORR) in the presence of H2/O2 gases in a temperature range of 50-70°C. The present study elucidates the performance of nitrogen-doped carbon nanotubes ORR electrocatalysts derived from ZIF-67 and the effects of membrane electrode assembly (MEA) steaming on the performance of proton exchange membrane fuel cell (PEMFC) employing PtCo-NCNTs as ORR electrocatalysts. We observed that the peak power density at 70°C was 450 mW/cm2 for steamed membrane electrode assembly (MEA) compared to 392 mW/cm2 for an identical MEA without steaming.


2021 ◽  
Author(s):  
Gandhimathi Sivasubramanian ◽  
Senthil Andavan Gurusamy Thangavelu ◽  
Berlina Maria Mahimai ◽  
Krishnan Hariharasubramanian ◽  
PARADESI DEIVANAYAGAM

Abstract Advanced polymer composite membranes were prepared from a linear sulfonated poly(ether ether ketone) (SPEEK) with bismuth cobalt zinc oxide [BCZO, (Bi2O3)0.07(CoO)0.03(ZnO)0.90] nanopowder as an inorganic additive for the application of H2-O2 fuel cell. Morphology data tend to provide evidences for the incorporation of BCZO into SPEEK polymer. Indeed, composite membrane loaded with 7.5 wt.% of BCZO was identified to uptake maximum water, while the pristine SPEEK membrane occurred to retain only 24.0 %. As such SPEEK matrix loaded with 7.5 wt.% of BCZO was found to exhibit the maximum proton conductivity of 0.030 S cm-1, whereas the pristine membrane was restricted to 0.021 S cm-1. Evidently, TGA profile of the composite membrane was measured to exhibit sufficient thermal stability to employ as electrolyte in fuel cell. The membrane electrode assembly of pristine SPEEK and SP-BCZO-7.5 wt.% membranes were fabricated and studied for their electrochemical performance. Indeed, the characteristics of newly developed composite membranes led to possess incredible feature towards fuel cell applications.


Sign in / Sign up

Export Citation Format

Share Document