Chemical controls on the solubility, speciation and mobility of lanthanum at near surface conditions: A geochemical modeling study

2008 ◽  
Vol 23 (8) ◽  
pp. 2301-2315 ◽  
Author(s):  
Ziya S. Cetiner ◽  
Yongliang Xiong
2018 ◽  
Vol 4 (12) ◽  
pp. eaau6178 ◽  
Author(s):  
Péter Németh ◽  
Enrico Mugnaioli ◽  
Mauro Gemmi ◽  
György Czuppon ◽  
Attila Demény ◽  
...  

Despite its thermodynamical metastability at near-surface conditions, aragonite is widespread in marine and terrestrial sediments. It abundantly forms in living organisms, and its abiotic formation is favored in waters of a Mg2+/Ca2+ratio > 1.5. Here, we provide crystallographic evidence of a nanocrystalline CaCO3polymorph, which precipitates before aragonite in a cave. The new phase, which we term monoclinic aragonite (mAra), is crystallographically related to ordinary, orthorhombic aragonite. Electron diffraction tomography combined with structure determination demonstrates that mAra has a layered aragonite structure, in which some carbonates can be replaced by hydroxyls and up to 10 atomic % of Mg can be incorporated. The diagnostic electron diffraction features of mAra are diffuse scattering and satellite reflections along aragonite {110}. Similar features have previously been reported—although unrecognized—from biogenic aragonite formed in stromatolites, mollusks, and cyanobacteria as well as from synthetic material. We propose that mAra is a widespread crystalline CaCO3that plays a hitherto unrecognized key role in metastable aragonite formation.


2021 ◽  
Vol 140 ◽  
pp. 106461
Author(s):  
Nasser A. Marafi ◽  
Alex Grant ◽  
Brett W. Maurer ◽  
Gunjan Rateria ◽  
Marc O. Eberhard ◽  
...  

Author(s):  
S. Carberry Mogan ◽  
P. Sawicki ◽  
C. J. Bernardo ◽  
D. Chen ◽  
I. Sahin ◽  
...  

A computational study is conducted to evaluate the performance of an extraterrestrial submarine operating in the liquid hydrocarbon seas of Saturn’s largest moon, Titan. To simulate the flow around the submarine and offer a prediction for thrust and power requirements, Computational Fluid Dynamics tools, ANSYS© FLUENT© and DualSPHysics, are utilized for the deeply submerged and near-surface conditions, respectively. Several operational scenarios are investigated and comparisons are made with other available results with a good qualitative and quantitative agreement.


2002 ◽  
Vol 1 (4) ◽  
pp. 295-304 ◽  
Author(s):  
Lynn J. Rothschild ◽  
Lorraine J. Giver

The discovery of subsurface communities has encouraged speculation that such communities might be present on planetary bodies exposed to harsh surface conditions, including the early Earth. While the astrobiology community has focused on the deep subsurface, near-subsurface environments are unique in that they provide some protection while allowing partial access to photosynthetically active radiation. Previously we identified near-surface microbial communities based on photosynthesis. Here we assess the productivity of such an ecosystem by measuring in situ carbon fixation rates in an intertidal marine beach through a diurnal cycle, and find them surprisingly productive. Gross fixation along a transect (99×1 m) perpendicular to the shore was highly variable and depended on factors such as moisture and mat type, with a mean of ~41 mg C fixed m−2 day−1. In contrast, an adjacent well-established cyanobacterial mat dominated by Lyngbya aestuarii was ~12 times as productive (~500 mg C fixed m−2 day−1). Measurements made of the Lyngbya mat at several times per year revealed a correlation between total hours of daylight and gross daily production. From these data, annual gross fixation was estimated for the Lyngbya mat and yielded a value of ~1.3×105 g m−2 yr−1. An analysis of pulse-chase data obtained in the study in conjunction with published literature on similar ecosystems suggests that subsurface interstitial mats may be an overlooked endogenous source of organic carbon, mostly in the form of excreted fixed carbon.


2019 ◽  
Vol 489 (1) ◽  
pp. 115-133 ◽  
Author(s):  
Gautier Nicoli

AbstractThe fluid budget of a composite crustal column is a critical parameter that influences many lithospheric processes. The amount of water introduced into the middle and lower crust can be quantified using phase equilibrium modelling. The Dharwar Craton, India, displays a now-exposed continuous crustal section from near-surface conditions to c. 30 km depth. This section records the different steps of a c. 15 myr-long high-temperature metamorphic event (60°C kbar−1) responsible for the formation of syn- to post-tectonic anatectic intrusions. The global water budget is assessed using thermodynamic modelling on bulk-rock compositions of an average early Proterozoic supracrustal unit and c. 3.0 Ga felsic basement, the Peninsular gneisses. Results show the fast burial of a water-saturated supracrustal package (1.6 wt%) will release c. 50% of its mineral-bound water, triggering water-fluxed partial melting of the basement. Modelled anatectic magma compositions match the observed granitoid chemistries, and distinction can be made between water-fluxed melting and water-absent melting in the origin of syn- to post-tectonic anatectic granites. Findings from this study show the importance of crustal pile heterogeneity in controlling the nature of partial melting reactions, the composition of the magmas and the rheology of the crust.


1974 ◽  
Vol 39 (308) ◽  
pp. 867-877 ◽  
Author(s):  
G. J. Pringle ◽  
L. T. Trembath ◽  
G. E. Pajari

SummaryElectron microprobe and textural data are used to deduce a crystallization history for plagioclase in the Grand Manan Island (Canada) diabase sheet. The plagioclase crystals consist of a prominent core (An79-67) surrounded by a distinctly more calcic zone (An82-76), which grades into a normally zoned mantle (An73-40). This zoning pattern is interpreted as reflecting the elevation of a dry diabase magma from at least 10 to 20 km to near surface conditions.


Author(s):  
Daniel Isong Otu Egbe ◽  
Ashkan Jahanbani Ghahfarokhi ◽  
Menad Nait Amar ◽  
Ole Torsæter

2020 ◽  
Vol 117 (19) ◽  
pp. 10172-10180
Author(s):  
Rebecca M. Flowers ◽  
Francis A. Macdonald ◽  
Christine S. Siddoway ◽  
Rachel Havranek

The Great Unconformity marks a major gap in the continental geological record, separating Precambrian basement from Phanerozoic sedimentary rocks. However, the timing, magnitude, spatial heterogeneity, and causes of the erosional event(s) and/or depositional hiatus that lead to its development are unknown. We present field relationships from the 1.07-Ga Pikes Peak batholith in Colorado that constrain the position of Cryogenian and Cambrian paleosurfaces below the Great Unconformity. Tavakaiv sandstone injectites with an age of ≥676 ± 26 Ma cut Pikes Peak granite. Injection of quartzose sediment in bulbous bodies indicates near-surface conditions during emplacement. Fractured, weathered wall rock around Tavakaiv bodies and intensely altered basement fragments within unweathered injectites imply still earlier regolith development. These observations provide evidence that the granite was exhumed and resided at the surface prior to sand injection, likely before the 717-Ma Sturtian glaciation for the climate appropriate for regolith formation over an extensive region of the paleolandscape. The 510-Ma Sawatch sandstone directly overlies Tavakaiv-injected Pikes granite and drapes over core stones in Pikes regolith, consistent with limited erosion between 717 and 510 Ma. Zircon (U-Th)/He dates for basement below the Great Unconformity are 975 to 46 Ma and are consistent with exhumation by 717 Ma. Our results provide evidence that most erosion below the Great Unconformity in Colorado occurred before the first Neoproterozoic Snowball Earth and therefore cannot be a product of glacial erosion. We propose that multiple Great Unconformities developed diachronously and represent regional tectonic features rather than a synchronous global phenomenon.


Sign in / Sign up

Export Citation Format

Share Document