scholarly journals Time-domain simulation of second-order irregular wave diffraction based on a hybrid water wave radiation condition

2016 ◽  
Vol 40 (7-8) ◽  
pp. 4451-4467 ◽  
Author(s):  
G. Xu ◽  
A.M.S. Hamouda ◽  
B.C. Khoo
Author(s):  
Gang Xu ◽  
A. M. S. Hamouda

A time-domain second-order method is presented to simulate three-dimensional (3D) wave-body interaction. In the approach, Taylor series expansions are applied to the free surface boundary conditions, and Stokes perturbation procedure is then used to establish corresponding boundary value problem at first-order and second-order on the time-independent surfaces. A Boundary Element Method (BEM), based on Rankine source, is used to calculate wave field at each time step. Multi-Transmitting Formula coupled with Damping Zone method (MTF+DZ) is employed as radiation condition to minimize the wave reflection. A stable Integral form of Free surface Boundary Condition (IFBC) is used to update velocity potential on the free surface. The present method is applied to compute the second-order Stokes wave diffraction of bottom-mounted circular cylinder first, and then to compute the irregular second-order Stokes wave diffraction of truncated cylinder in infinite water depth with three wave components. It is shown that long time simulation can be done with stability, and the model can be used to time-domain simulation of nonlinear irregular wave-body interaction.


1993 ◽  
Vol 6 (2-3) ◽  
pp. 241-258 ◽  
Author(s):  
Kwok Fai Cheung ◽  
Michael Isaacson ◽  
Joseph Y.T. Ng

1993 ◽  
Vol 37 (01) ◽  
pp. 25-33 ◽  
Author(s):  
Michael Isaacson ◽  
Joseph Y. T. Ng

This paper presents a time-domain second-order method to study the nonlinear wave radiation problem in two dimensions. A time-stepping scheme is adopted to obtain the resulting flow development which satisfies the nonlinear free-surface boundary conditions and the radiation condition to second order, and the numerical procedure utilizes a boundary integral equation method based on Green's theorem to calculate the field solution at each time step. The body surface boundary condition is expanded about the mean body position to second order by a Taylor series. The method is applied to the cases of a semi-submerged circular cylinder and a rectangular cylinder undergoing sinusoidal sway, heave and roll motions. For the case of the circular cylinder, comparisons of the computed hydrodynamic forces at first and second order are made with previous theoretical and experimental results and a favorable agreement is indicated. The importance of second-order effects in the calculation of the hydrodynamic force is discussed.


1992 ◽  
Vol 114 (1) ◽  
pp. 36-44 ◽  
Author(s):  
C. Yang ◽  
R. C. Ertekin

A three-dimensional time domain approach is used to study nonlinear wave diffraction by a fixed, vertical circular-cylinder that extends to the sea floor. In this approach, the development of the flow can be obtained by a time-stepping procedure, in which the velocity potential of the flow at any instant of time is obtained by the boundary-element method. In the numerical calculations, the exact body-boundary condition is satisfied on the instantaneous wetted surface of the cylinder, and an extended Sommerfeld condition is developed and used as the numerical radiation condition. The fourth-order Adams-Bashford method is employed in the time stepping scheme. Calculations are done to obtain the nonlinear diffraction of solitary waves and Stokes second-order waves by a vertical circular-cylinder. Numerical results are compared with the available linear and second-order wave-force predictions for some given wave height and wavelength conditions, and also with experimental data. Present horizontal force results agree better with the experimental data than the previous predictions.


Sign in / Sign up

Export Citation Format

Share Document