scholarly journals An improved analysis of free torsional vibration of axially loaded thin-walled beams with point-symmetric open cross-section

2016 ◽  
Vol 40 (23-24) ◽  
pp. 10199-10209
Author(s):  
Aleksandar Prokić ◽  
Rastislav Mandić ◽  
Martina Vojnić-Purčar
1981 ◽  
Vol 48 (1) ◽  
pp. 169-173 ◽  
Author(s):  
S. Narayanan ◽  
J. P. Verma ◽  
A. K. Mallik

Free-vibration characteristics of a thin-walled, open cross-section beam, with unconstrained damping layers at the flanges, are investigated. Both uncoupled transverse vibration and the coupled bending-torsion oscillations, of a beam of a top-hat section, are considered. Numerical results are presented for natural frequencies and modal loss factors of simply supported and clamped-clamped beams.


Author(s):  
Dianlong Yu ◽  
Yaozong Liu ◽  
Jing Qiu ◽  
Gang Wang ◽  
Jihong Wen

Triply coupled vibration through periodic thin-walled open cross section nonsymmetrical beams composed of two kinds of material is studied in this paper. Based on the triply coupled vibration equation, plane wave expansion method for the thin-walled beams is provided. If the filling fraction keeps constant, the lattice is one of the factors that affect the normalized gap width. If the lattice and filling fraction keep constant, the Young’s modulus contrast plays a fundamental role for the band gap width, but not density contrast. Finally, the frequency response of a finite periodic binary beam is simulated with finite element method, which provides an attenuation of over 20dB in the frequency range of the band gaps. The findings will be significant in the application of phononic crystals.


2019 ◽  
Vol 32 (5) ◽  
pp. 1347-1356 ◽  
Author(s):  
Czesław Szymczak ◽  
Marcin Kujawa

AbstractThe paper addresses sensitivity analysis of free torsional vibration frequencies of thin-walled beams of bisymmetric open cross section made of unidirectional fibre-reinforced laminate. The warping effect and the axial end load are taken into account. The consideration is based upon the classical theory of thin-walled beams of non-deformable cross section. The first-order sensitivity variation of the frequencies is derived with respect to the design variable variations. The beam cross-sectional dimensions and the material properties are assumed the design variables undergoing variations. The paper includes a numerical example related to simply supported I-beams and the distributions of sensitivity functions of frequencies along the beam axis. Accuracy is discussed of the first-order sensitivity analysis in the assessment of frequency changes due to the fibre volume fraction variable variations, and the effect of axial loads is discussed too.


Sign in / Sign up

Export Citation Format

Share Document