A semianalytical approach to nonlinear fluid film forces of a hydrodynamic journal bearing with two axial grooves

2019 ◽  
Vol 65 ◽  
pp. 318-332 ◽  
Author(s):  
Yongfang Zhang ◽  
Xianwei Li ◽  
Chao Dang ◽  
Di Hei ◽  
Xia Wang ◽  
...  
Author(s):  
C. Rajalingham ◽  
B. S. Prabhu ◽  
R. B. Bhat ◽  
G. D. Xistris

Abstract The viscous heat generation in the lubricant film of a hydrodynamic journal bearing causes a rise in temperature of the fluid film. Considering the influence of the temperature variation along and across the film, the performance of a journal bearing is investigated under adiabatic conditions for different values of thermal conductivity of the lubricant. In this analysis, the temperature of the journal surface has been chosen to ensure that there is no net heat transfer from the lubricant The results show that the variation of temperature across the film affects bearing performance significantly and that an increase in lubricant thermal conductivity enhances bearing performance.


Author(s):  
E. SUJITH PRASAD ◽  
T. NAGARAJU ◽  
J. PREM SAGAR

This theoretical work describe the combined influence of surface roughness, thermal and fluid-inertia effects on performance characteristics of hydrodynamic journal bearing. The average Reynolds equation that modified to include the surface roughness, viscosity variation due to temperature rise in lubricant fluid-film and fluid-inertia is used to obtain pressure field in the fluid-film. The matched solutions of modified average Reynolds, energy and conduction equations are obtained using finite element method and appropriate iterative schemes. The effects of surface roughness parameter, roughness orientation, and roughness characteristics of opposing surfaces on circumferential fluid-film pressure distribution, load carrying capacity and stability threshold speed of the bearing are studied by considering thermal and fluid-inertia effects.


2002 ◽  
Vol 45 (3) ◽  
pp. 324-329 ◽  
Author(s):  
Zhaobo Chen ◽  
Yinghou Jiao ◽  
Songbo Xia ◽  
Wenhu Huang ◽  
Zhiming Zhang

Author(s):  
Chandan Kumar ◽  
Somnath Sarangi

Planar dynamics of a rotor supported by long hydrodynamic journal bearing is investigated theoretically. An analytical model of the long journal bearing system is numerically integrated for analysis of fixed point and periodic oscillations. The nonlinearities in the system arise due to a nonlinear fluid film force acting on the journal. The influences of three dimensionless parameters, viz. bearing parameter, unbalance, and rotor speed, on the dynamic behavior of the rotor bearing system is studied and compared with the short journal bearing. For the same bearing parameter, short bearing has large operating speed compared to a long bearing. The results are presented in the form of a bifurcation diagram and Poincaré map of the oscillations based on numerical computation. The considered unbalanced system shows periodic, multiperiodic, and quasi-periodic motion in different speed range. Jumping phenomenon is also observed for a high value of bearing parameter with unbalance.


Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Eckhard Schüler ◽  
Olaf Berner

In high speed, high load fluid-film bearings, the laminar-turbulent flow transition can lead to a considerable reduction of the maximum bearing temperatures, due to a homogenization of the fluid-film temperature in radial direction. Since this phenomenon only occurs significantly in large bearings or at very high sliding speeds, means to achieve the effect at lower speeds have been investigated in the past. This paper shows an experimental investigation of this effect and how it can be used for smaller bearings by optimized eddy grooves, machined into the bearing surface. The investigations were carried out on a Miba journal bearing test rig with Ø120 mm shaft diameter at speeds between 50 m/s–110 m/s and at specific bearing loads up to 4.0 MPa. To investigate the potential of this technology, additional temperature probes were installed at the crucial position directly in the sliding surface of an up-to-date tilting pad journal bearing. The results show that the achieved surface temperature reduction with the optimized eddy grooves is significant and represents a considerable enhancement of bearing load capacity. This increase in performance opens new options for the design of bearings and related turbomachinery applications.


1989 ◽  
Vol 111 (3) ◽  
pp. 426-429 ◽  
Author(s):  
T. Kato ◽  
Y. Hori

A computer program for calculating dynamic coefficients of journal bearings is necessary in designing fluid film journal bearings and an accuracy of the program is sometimes checked by the relation that the cross terms of linear damping coefficients of journal bearings are equal to each other, namely “Cxy = Cyx”. However, the condition for this relation has not been clear. This paper shows that the relation “Cxy = Cyx” holds in any type of finite width journal bearing when these are calculated under the following condition: (I) The governing Reynolds equation is linear in pressure or regarded as linear in numerical calculations; (II) Film thickness is given by h = c (1 + κcosθ); and (III) Boundary condition is homogeneous such as p=0 or dp/dn=0, where n denotes a normal to the boundary.


2009 ◽  
Vol 2 (1/2/3/4/5/6) ◽  
pp. 251 ◽  
Author(s):  
K. Prabhakaran Nair ◽  
Mohammed Shabbir Ahmed ◽  
Saed Thamer Al qahtani

Sign in / Sign up

Export Citation Format

Share Document