Closed-loop online harmonic vibration estimation in DC electric motor systems

2021 ◽  
Vol 94 ◽  
pp. 460-481
Author(s):  
F. Beltran-Carbajal ◽  
R. Tapia-Olvera ◽  
A. Valderrabano-Gonzalez ◽  
H. Yanez-Badillo ◽  
J.C. Rosas-Caro ◽  
...  
Author(s):  
Sundhy Pareza ◽  
Purwantono Purwantono ◽  
Remon Lapisa ◽  
Primawati Primawati

The issue of global warming is very strong in the force in the procession, the damage caused by global warming is very influential in the survival of living beings. The methods performed in this study are experimental methods. The experiments performed were to make a design and to become a unity so that it formed a tool of electric bicycle transportation that can be used well. This thesis author devise and assemble electric bicycle using DC electric motor 24 Volt 250 Watt and 3000 rpm. The power system used is 24 Volt 12 Ampere battery. From the results of the test and analysis of data that has been taken on the electric bicycle obtained data of the average speed obtained by the electric bike with a load of 78 = 4.94 m/s, load 83 = 4.59 m/s, load 88 = 4.25 m/s, power output to drive electric bicycle with load 78 = 266.679 Watt, load 83 = 263.810 Watt, load 88 = 258.984 Watt. Isu pemanasan global sangat kuat di gencar disuarakan, kerusakan yang disebabkan pemanasan global sangat berpengaruh pada kelangsungan hidup makluk hidup. Metode yang dilakukan dalam penelitian ini adalah metode eksperimen. Eksperimen yang dilakukan adalah membuat sebuah rancangan dan merakitnya menjadi suatu kesatuan sehingga terbentuk sebuah alat transportasi sepeda listrikyang dapat digunakan dengan baik. Skripsi ini penulis merancang dan merakit sepeda listrik dengan menggunakan motor listrik DC 24 Volt 250 Watt dan 3000 rpm. Sistem daya yang digunakan adalah baterai 24 Volt 12 Ampere. Dari hasil pengujian dan analisis data yang telah diambil pada sepeda listrik didapatkan data berupa kecepatan rata-rata yang didapatkan sepeda listrik dengan beban 78 = 4,94 m/s, beban 83 = 4,59 m/s, beban 88 = 4,25 m/s, daya output untuk menggerakkan sepeda listrik  dengan beban 78 = 266,679 Watt, beban 83 = 263,810 Watt, beban 88 = 258,984 Watt.


Author(s):  
Kyoungchul Kong ◽  
Helge C. Kniep ◽  
Masayoshi Tomizuka

Input saturation is a well-known nonlinearity in mechanical control systems; it constrains the maximum acceleration, which results in the limitation of the system response time. Input saturation has been considered in controller design in various ways, e.g., antiwindup control. In addition to the input, the state variables of mechanical systems are often subjected to saturation. For example, the maximum angular velocity of electric motor systems is limited by the maximum voltage provided to the motor windings. In the case of electronically commutated motors (i.e., brushless dc motors), the maximum speed is additionally constrained by limitations of the servo amplifier output. If gears are utilized, further constraints are introduced due to resonances in ball bearings and/or velocity dependent friction. Although such factors are significant in practice, they have not been fully considered in controller design. This paper investigates the input and output saturations, and presents how they may be considered in the controller design; a Kalman filter, a PID controller, and a disturbance observer are designed, taking input/output saturations into consideration. A case study is provided to verify the proposed methods.


1997 ◽  
Vol 81 (8) ◽  
pp. 5100-5102 ◽  
Author(s):  
G. K. Nicolaides ◽  
Y. K. Atanassova ◽  
M. G. Ioannides ◽  
D. M. Tsamakis ◽  
H. Gamari-Seale

2020 ◽  
Vol 17 (9) ◽  
pp. 4122-4124
Author(s):  
Bishwajit Pal ◽  
Samitha Khaiyum

This article illustrates a technique for tracking longitudinal wheel slips in real time using an embedded microcontroller to map current consumption against real-time current consumed by the engine. This system can be used and operated separately of each other on more than one wheel. To detect wheel slippage, a predefined slip curve mapped to a specific DC electric motor is mapped against the current consumed by the same operational motors. This paper also recommends a convenient control algorithm to calculate its slippage of the wheel in real time. This approach is implemented using distinct load and terrain on a planetary exploration robot.


2017 ◽  
Vol 15 (1) ◽  
pp. 15-21
Author(s):  
Gabriela Achtenová

Abstract The article describes the concept of modular stand, where is possible to provide tests of gear pairs with fixed axes from mechanical automotive gearboxes, as well as tests of separate planetary sets from automatic gearboxes. Special attention in the article will be paid to the variant dedicated for testing of planetary gear sets. This variant is particularly interesting because: 1) it is rarely described in the literature, and 2) this topology allows big simplification with respect to testing of standard gearwheels. In the planetary closed-loop stand it is possible to directly link two identical planetary sets. Without any bracing flange or other connecting clutches, shafts or gear sets, just two planetary sets face-to-face will be assembled and connected to the electric motor.


Sign in / Sign up

Export Citation Format

Share Document