A semi-analytical nonlocal elasticity model for static stability and vibration behaviour of agglomerated CNTs reinforced nano cylindrical panel under non-uniform edge loads

Author(s):  
C.M. Twinkle ◽  
Pitchaimani Jeyaraj
2020 ◽  
pp. short10-1-short10-9
Author(s):  
Ekaterina Krylova ◽  
Irina Papkova ◽  
Vadim Krysko

Process visualization of static stability loss in mechanics is shown by the micropolar meshed cylindrical panel example with two families of mutually perpendicular ribs. The mathematical model of the panel's behavior is based on the Kirchhoff-Love hypotheses. The micropolar theory is applied to ac-count for scale effects. Geometric nonlinearity is taken into account according to the theory of Theodor von Karman. The mesh structure is taken into account based on the Pshenichnov I. G. continuum model. Visualization of numerical results using Autodesk 3ds Max software made it possible to more clearly assess the phenomenon of static buckling of the shell in question. Visualization of the results using 3D made it possible to establish that an in-crease in the distance between the edges of the mesh panel and an increase in the parameter depending on the size does not change the bending shape of the panel, as well as the diagrams of moments and forces at subcritical and supercritical loads.


2012 ◽  
Vol 163 (3) ◽  
pp. 96-104 ◽  
Author(s):  
Joachim Klädtke ◽  
Ulrich Kohnle ◽  
Edgar Kublin ◽  
Andreas Ehring ◽  
Hans Pretzsch ◽  
...  

Growth and value production of Douglas-fir under varying stand densities The investigation is focused on the effects of initial tree number and thinning on growth and value performance of Douglas-fir stands. Data base is a coordinated Douglas-fir spacing experiment in South Germany, started 40 years ago and comprising variants of tree numbers with 500, 1,000, 2,000 and 4,000 Douglas-firs per hectare. The treatment was performed according to a standardized experiment program. The results show that at low initial tree numbers, the diameter on breast height (DBH) of (pre)dominant trees at the beginning of the observations (with 12 m top height) is bigger than at higher initial plant numbers. Accordingly, the quotient of height (H) to DBH (as an indicator for tree's static stability) is lower. The further development of DBH and H/DBH quotient is decisively determined by stand treatment, which superimposes the effect of the initial tree number. The total volume growth shows a clear differentiation, too, the variants with initially high tree numbers appearing on top. In the monetary analysis, this ranking is reversed: despite a supposed inferior wood quality, the variants with lower initial tree numbers clearly outperform the ones with higher numbers in terms of value. From these results, the following silvicultural recommendations for Douglas-fir can be derived: the initial tree numbers should be in the range from 1,000 to 2,000 plants per hectare. On technically not accessible sites, even lower tree numbers may come into question. The strong influence of stand treatment on DBH and H/DBH development highlights the problem of postponed thinnings, for this causes growth and stability losses even under favorable starting conditions in terms of competition.


2021 ◽  
Vol 62 (9) ◽  
Author(s):  
Patrick M. Seltner ◽  
Sebastian Willems ◽  
Ali Gülhan ◽  
Eric C. Stern ◽  
Joseph M. Brock ◽  
...  

Abstract The influence of the flight attitude on aerodynamic coefficients and static stability of cylindrical bodies in hypersonic flows is of interest in understanding the re/entry of space debris, meteoroid fragments, launch-vehicle stages and other rotating objects. Experiments were therefore carried out in the hypersonic wind tunnel H2K at the German Aerospace Center (DLR) in Cologne. A free-flight technique was employed in H2K, which enables a continuous rotation of the cylinder without any sting interferences in a broad angular range from 0$$^{\circ }$$ ∘ to 90$$^{\circ }$$ ∘ . A high-speed stereo-tracking technique measured the model motion during free-flight and high-speed schlieren provided documentation of the flow topology. Aerodynamic coefficients were determined in careful post-processing, based on the measured 6-degrees-of-freedom (6DoF) motion data. Numerical simulations by NASA’s flow solvers Cart3D and US3D were performed for comparison purposes. As a result, the experimental and numerical data show a good agreement. The inclination of the cylinder strongly effects both the flowfield and aerodynamic loads. Experiments and simulations with concave cylinders showed marked difference in aerodynamic behavior due to the presence of a shock–shock interaction (SSI) near the middle of the model. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document