scholarly journals Aerodynamics of inclined cylindrical bodies free-flying in a hypersonic flowfield

2021 ◽  
Vol 62 (9) ◽  
Author(s):  
Patrick M. Seltner ◽  
Sebastian Willems ◽  
Ali Gülhan ◽  
Eric C. Stern ◽  
Joseph M. Brock ◽  
...  

Abstract The influence of the flight attitude on aerodynamic coefficients and static stability of cylindrical bodies in hypersonic flows is of interest in understanding the re/entry of space debris, meteoroid fragments, launch-vehicle stages and other rotating objects. Experiments were therefore carried out in the hypersonic wind tunnel H2K at the German Aerospace Center (DLR) in Cologne. A free-flight technique was employed in H2K, which enables a continuous rotation of the cylinder without any sting interferences in a broad angular range from 0$$^{\circ }$$ ∘ to 90$$^{\circ }$$ ∘ . A high-speed stereo-tracking technique measured the model motion during free-flight and high-speed schlieren provided documentation of the flow topology. Aerodynamic coefficients were determined in careful post-processing, based on the measured 6-degrees-of-freedom (6DoF) motion data. Numerical simulations by NASA’s flow solvers Cart3D and US3D were performed for comparison purposes. As a result, the experimental and numerical data show a good agreement. The inclination of the cylinder strongly effects both the flowfield and aerodynamic loads. Experiments and simulations with concave cylinders showed marked difference in aerodynamic behavior due to the presence of a shock–shock interaction (SSI) near the middle of the model. Graphic abstract

2019 ◽  
Vol 30 (9) ◽  
pp. 4185-4201
Author(s):  
Daniel Klatt ◽  
Michael Proff ◽  
Robert Hruschka

Purpose The present work aims to investigate the capabilities of accurately predicting the six-degrees-of-freedom (6DoF) trajectory and the flight behavior of a flare-stabilized projectile using computational fluid dynamics (CFD) and rigid body dynamics (RBD) methods. Design/methodology/approach Two different approaches are compared for calculating the trajectory. First, the complete matrix of static and dynamic aerodynamic coefficients for the projectile is determined using static and dynamic CFD methods. This discrete database and the data extracted from free-flight experiments are used to simulate flight trajectories with an in-house developed 6DoF solver. Second, the trajectories are simulated solving the 6DoF motion equations directly coupled with time resolved CFD methods. Findings Virtual fly-out simulations using RBD/CFD coupled simulation methods well reproduce the motion behavior shown by the experimental free-flight data. However, using the discrete database of aerodynamic coefficients derived from CFD simulations shows a slightly different flight behavior. Originality/value A discrepancy between CFD 6DoF/RBD simulations and results obtained by the MATLAB 6DoF-solver based on discrete CFD data matrices is shown. It is assumed that not all dynamic effects on the aerodynamics of the projectile are captured by the determination of the force and moment coefficients with CFD simulations based on the classical aerodynamic coefficient decomposition.


2015 ◽  
Vol 772 ◽  
pp. 401-409
Author(s):  
Mehrdad Ebrahimi Dormiyani ◽  
Afshin Banazadeh ◽  
Fariborz Saghafi

In the current paper, seven degrees of freedom multibody model of a monocopter air vehicle is developed based on the Newton-Euler approach along with nonlinear simulation in different flight phases. Aerodynamic forces and moments are modeled using blade element momentum theory. The sole control surface is modeled like a conventional flap on a wing. Free flight simulation is performed in MATLAB Simulink environment to evaluate the behavior of the system and to demonstrate the effectiveness and applicability of the proposed model. Simulation results show harmonic oscillations in Euler angles, linear and angular velocities that are consistent with the physics and mathematical foundations. Static stability of the vehicle is evident in free flight by careful choice of initial conditions. The presented multibody model is useful for comparative study and design purposes.


2021 ◽  
Vol 2079 (1) ◽  
pp. 012023
Author(s):  
Xu-Tuo Ding ◽  
Shi-Ji Li ◽  
Song-Jiang Peng ◽  
Jin Wei

Abstract The aerodynamic characteristics of a water entry projectile is studied. The aerodynamic coefficients at different Mach numbers and different attack angles are given through CFD numerical simulation, and the stability analysis is carried out. The results show that the projectile with the current shape meets the static stability requirements. Based on the aerodynamic coefficients obtained, the projectile flight trajectory equation is established to obtain the trajectory at different emissive angles. Finally, the trajectory parameters with the range of 5 km were used as the initial conditions for the simulation of high-speed water entry projectile, and the process of projectile entry with small angle was simulated. The simulation results show that the projectile sails smoothly when entering the water, the trajectory is straight, there is no ricochet phenomenon, which has a good water entry stability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Debo Qi ◽  
Chengchun Zhang ◽  
Jingwei He ◽  
Yongli Yue ◽  
Jing Wang ◽  
...  

AbstractThe fast swimming speed, flexible cornering, and high propulsion efficiency of diving beetles are primarily achieved by their two powerful hind legs. Unlike other aquatic organisms, such as turtle, jellyfish, fish and frog et al., the diving beetle could complete retreating motion without turning around, and the turning radius is small for this kind of propulsion mode. However, most bionic vehicles have not contained these advantages, the study about this propulsion method is useful for the design of bionic robots. In this paper, the swimming videos of the diving beetle, including forwarding, turning and retreating, were captured by two synchronized high-speed cameras, and were analyzed via SIMI Motion. The analysis results revealed that the swimming speed initially increased quickly to a maximum at 60% of the power stroke, and then decreased. During the power stroke, the diving beetle stretched its tibias and tarsi, the bristles on both sides of which were shaped like paddles, to maximize the cross-sectional areas against the water to achieve the maximum thrust. During the recovery stroke, the diving beetle rotated its tarsi and folded the bristles to minimize the cross-sectional areas to reduce the drag force. For one turning motion (turn right about 90 degrees), it takes only one motion cycle for the diving beetle to complete it. During the retreating motion, the average acceleration was close to 9.8 m/s2 in the first 25 ms. Finally, based on the diving beetle's hind-leg movement pattern, a kinematic model was constructed, and according to this model and the motion data of the joint angles, the motion trajectories of the hind legs were obtained by using MATLAB. Since the advantages of this propulsion method, it may become a new bionic propulsion method, and the motion data and kinematic model of the hind legs will be helpful in the design of bionic underwater unmanned vehicles.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaohui Liu ◽  
Ming Zou ◽  
Chuan Wu ◽  
Mengqi Cai ◽  
Guangyun Min ◽  
...  

A new quad bundle conductor galloping model considering wake effect is proposed to solve the problem of different aerodynamic coefficients of each subconductor of iced quad bundle conductor. Based on the quasistatic theory, a new 3-DOF (three degrees of freedom) galloping model of iced quad bundle conductors is established, which can accurately reflect the energy transfer and galloping of quad bundle conductor in three directions. After a series of formula derivations, the conductor stability judgment formula is obtained. In the wind tunnel test, according to the actual engineering situation, different variables are set up to accurately simulate the galloping of iced quad bundle conductor under the wind, and the aerodynamic coefficient is obtained. Finally, according to the stability judgment formula of this paper, calculate the critical wind speed of conductor galloping through programming. The dates of wind tunnel test and calculation in this paper can be used in the antigalloping design of transmission lines.


2012 ◽  
Vol 591-593 ◽  
pp. 303-306
Author(s):  
Xiao You Zhang ◽  
Akio Kifuji ◽  
Dong Jue He

Electrical discharge machining has the capability of machining all conductive materials regardless of hardness, and has the ability to deal with complex shapes. However, the speed and accuracy of conventional EDM are limited by probability and efficiency of the electrical discharges. This paper describes a three degrees of freedom (3-DOF) controlled, wide-bandwidth, high-precision, long-stroke magnetic drive actuator. The actuator can be attached to conventional electrical discharge machines to realize a high-speed and high-accuracy EDM. The actuator primarily consists of thrust and radial magnetic bearings, thrust and radial air bearings and a magnetic coupling mechanism. By using the thrust and radial magnetic bearings, the translational motions of the spindle can be controlled. The magnetic drive actuator possesses a positioning resolution of the order of micrometer, a bandwidth greater than 100Hz and a positioning stroke of 2mm.


2017 ◽  
Vol 13 (2) ◽  
pp. 155014771769608 ◽  
Author(s):  
Yejin Kim

Dynamic human movements such as dance are difficult to capture without using external markers due to the high complexity of a dancer’s body. This article introduces a marker-free motion capture and composition system for dance motion that uses multiple RGB and depth sensors. Our motion capture system utilizes a set of high-speed RGB and depth sensors to generate skeletal motion data from an expert dancer. During the motion acquisition process, a skeleton tracking method based on a particle filter is provided to estimate the motion parameters for each frame from a sequence of color images and depth features retrieved from the sensors. The expert motion data become archived in a database. The authoring methods in our composition system automate most of the motion editing processes for general users by providing an online motion search with an input posture and then performing motion synthesis on an arbitrary motion path. Using the proposed system, we demonstrate that various dance performances can be composed in an intuitive and efficient way on client devices such as tablets and kiosk PCs.


Author(s):  
Alireza Marzbanrad ◽  
Jalil Sharafi ◽  
Mohammad Eghtesad ◽  
Reza Kamali

This is report of design, construction and control of “Ariana-I”, an Underwater Remotely Operated Vehicle (ROV), built in Shiraz University Robotic Lab. This ROV is equipped with roll, pitch, heading, and depth sensors which provide sufficient feedback signals to give the system six degrees-of-freedom actuation. Although its center of gravity and center of buoyancy are positioned in such a way that Ariana-I ROV is self-stabilized, but the combinations of sensors and speed controlled drivers provide more stability of the system without the operator involvement. Video vision is provided for the system with Ethernet link to the operation unit. Control commands and sensor feedbacks are transferred on RS485 bus; video signal, water leakage alarm, and battery charging wires are provided on the same multi-core cable. While simple PI controllers would improve the pitch and roll stability of the system, various control schemes can be applied for heading to track different paths. The net weight of ROV out of water is about 130kg with frame dimensions of 130×100×65cm. Ariana-I ROV is designed such that it is possible to be equipped with different tools such as mechanical arms, thanks to microprocessor based control system provided with two directional high speed communication cables for on line vision and operation unit.


Author(s):  
Lianzheng Cui ◽  
Zuogang Chen ◽  
Yukun Feng

The drag reduction effect of interceptors on planning boats has been widely proven, but the mechanism of the effect has been rarely studied in terms of drag components, especially for spray resistance. The resistance was caused by the high gauge pressure under the boats transformed from the dynamic pressure, and it is the largest drag component in the high-speed planning mode. In this study, numerical simulations of viscous flow fields around a planning boat with and without interceptors were conducted. A two degrees of freedom motion model was employed to simulate the trim and sinkage. The numerical results were validated against the experimental data. The flow details with and without the interceptor were visualized and compared to reveal the underlying physics. A thinner and longer waterline could be achieved by the interceptor, which made the boat push the water away more gradually, and hence, the wave-making resistance could be decreased. The improved waterline also reduced the component of the freestream normal to the hull surface and led to the less transformed dynamic pressure, resulting in the lowAer spray resistance. Furthermore, the suppression of the flow separation could also be benefited from the interceptor; the viscous pressure resistance was therefore decreased.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840079
Author(s):  
Wensheng Huang ◽  
Hongli Xu

The application of machine vision to industrial robots is a hot topic in robot research nowadays. A welding robot with machine vision had been developed, which is convenient and flexible to reach the welding point with six degrees-of-freedom (DOF) manipulator, while the singularity of its movement trail is prevented, and the stability of the mechanism had been fully guaranteed. As the precise industry camera can capture the optical feature of the workpiece to reflect in the camera’s CCD lens, the workpiece is identified and located through a visual pattern recognition algorithm based on gray scale processing, on the gradient direction of edge pixel or on geometric element so that high-speed visual acquisition, image preprocessing, feature extraction and recognition, target location are integrated and hardware processing power is improved. Another task is to plan control strategy of control system, and the upper computer software is programmed in order that multi-axis motion trajectory is optimized and servo control is accomplished. Finally, prototype was developed and validation experiments show that the welding robot has high stability, high efficiency, high precision, even if welding joints are random and workpiece contour is irregular.


Sign in / Sign up

Export Citation Format

Share Document