Investigation of the Neural Dynamics of Human Motor Learning Using an Intracortical Brain Computer Interface

2017 ◽  
Vol 98 (12) ◽  
pp. e163
Author(s):  
David Lin ◽  
Marco Vilela ◽  
David Brandman ◽  
Tommy Hosman ◽  
Jad Saab ◽  
...  
Author(s):  
Yiwen Wang ◽  
Yuxiao Lin ◽  
Chao Fu ◽  
Zhihua Huang ◽  
Rongjun Yu ◽  
...  

Abstract The desire for retaliation is a common response across a majority of human societies. However, the neural mechanisms underlying aggression and retaliation remain unclear. Previous studies on social intentions are confounded by low-level response related brain activity. Using an EEG-based brain-computer interface (BCI) combined with the Chicken Game, our study examined the neural dynamics of aggression and retaliation after controlling for nonessential response related neural signals. Our results show that aggression is associated with reduced alpha event-related desynchronization (ERD), indicating reduced mental effort. Moreover, retaliation and tit-for-tat strategy use are also linked with smaller alpha-ERD. Our study provides a novel method to minimize motor confounds and demonstrates that choosing aggression and retaliation is less effortful in social conflicts.


2011 ◽  
Vol 8 (4) ◽  
pp. 046013 ◽  
Author(s):  
Jarod Roland ◽  
Kai Miller ◽  
Zac Freudenburg ◽  
Mohit Sharma ◽  
Matthew Smyth ◽  
...  

2013 ◽  
Vol 133 (3) ◽  
pp. 635-641
Author(s):  
Genzo Naito ◽  
Lui Yoshida ◽  
Takashi Numata ◽  
Yutaro Ogawa ◽  
Kiyoshi Kotani ◽  
...  

Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.


Sign in / Sign up

Export Citation Format

Share Document