Time-domain numerical and segmented ship model experimental analyses of hydroelastic responses of a large container ship in oblique regular waves

2017 ◽  
Vol 67 ◽  
pp. 78-93 ◽  
Author(s):  
Zhanyang Chen ◽  
Jialong Jiao ◽  
Hui Li
Author(s):  
Yongwon Lee ◽  
Zhenhong Wang ◽  
Nigel White ◽  
Spyros E. Hirdaris

As part of WILS II (Wave Induced Loads on Ships) Joint Industry Project organised by MOERI (Maritime and Ocean Engineering Research Institute, Korea), Lloyd’s Register has undertaken time domain springing and whipping analyses for a 10,000 TEU class container ship using computational tools developed in the Co-operative Research Ships (CRS) JIP [1]. For idealising the ship and handling the flexible modes of the structure, a boundary element method and a finite element method are employed for coupling fluid and structure domain problems respectively. The hydrodynamic module takes into account nonlinear effects of Froude-Krylov and restoring forces. This Fluid Structure Interaction (FSI) model is also coupled with slamming loads to predict wave loads due to whipping effects. Vibration modes and natural frequencies of the ship hull girder are calculated by idealising the ship structure as a Timoshenko beam. The results from springing and whipping analyses are compared with the results from linear and nonlinear time domain calculations for the rigid body. The results from the computational analyses in regular waves have been correlated with those from model tests undertaken by MOERI. Further the global effects of springing and whipping acting on large container ships are summarised and discussed.


Author(s):  
Yohei Kawasaki ◽  
Tetsuo Okada ◽  
Hiroaki Kobayakawa ◽  
Ichiro Amaya ◽  
Tetsuji Miyashita ◽  
...  

Worldwide expansion of economy has brought about prominent and rapid enlargement of container ships. Their greater beam has caused more flexible double bottom structure, giving rise to concerns about its adverse effect to the ultimate strength of hull girder. To accurately assess the ultimate strength of hull girder, it is essential to precisely grasp how the double bottom structures behave in the actual sea state, in terms of whipping and vibratory response as well as wave frequency response. In this paper, the authors investigated structural behavior of the double bottom of a 14,000 TEU ultra large container ship in long-crested irregular head seas. Firstly, time domain ship motion and wave pressure on the hull surface was obtained through numerical analysis using Rankine source method. Subsequently, the obtained loads were applied to 3-dimensional whole ship finite element model, and time domain elastic responses of all over the hull structures were analyzed using Newmark-β method in terms of both whipping and wave frequency responses. As a result, regarding the wave frequency response, it was found that maximum wave induced upward bending of the midship double bottom structures is exerted almost simultaneously with the maximum wave induced hogging hull girder bending moment. The correlation factors between the double bottom bending and the hull girder bending were about 0.94 around the midship region, and they decreased in the fore and aft region. Regarding the whipping and vibratory response, it was found that large whipping response induces forced vibration of the double bottom structures, especially in the midship region. Because of the higher natural frequencies of the double bottom structures compared with that of whipping, the double bottom structures are excited in the same phase as the hull girder whipping, resulting in superimposed longitudinal stresses in way of the bottom shell plating. From these observations, it can be concluded that the local bending behavior of the double bottom structures adversely affects the hull girder ultimate strength, both in terms of wave loads and whipping loads, and it is necessary to take sufficient care to the double bottom rigidity.


2021 ◽  
Author(s):  
Fei Duan ◽  
Ning Ma ◽  
Xiechong Gu ◽  
Yaohua Zhou ◽  
Wang Shangming

Abstract The excessive acceleration is one of five stability failure modes for intact stability being discussed at IMO. The excessive acceleration usually occurs in shallow draft state, under which the ship is prone to large nonlinear rolling motion. Therefore, the accurate prediction and evaluation of the acceleration response are required in ship intact stability analysis. This paper proposes a 5-DOF model in time domain to calculate the nonlinear acceleration response of a large container ship. The nonlinear restoring force and wave exciting forces (F-K force) are calculated through pressure integration on instantaneous wetted surfaces. A model test has been carried out to verify the prediction method of ship nonlinear acceleration response in the regular and irregular waves. It turns out the ship nonlinear acceleration response in regular and irregular waves obtained by the nonlinear time domain simulation agrees well with the experimental results. The vulnerability criteria for excessive acceleration are also validated by numerical and experimental results. In addition, the influence factor of ship lateral acceleration is studied. The results show that the prediction accuracy of 5-DOF model is acceptable. However, the accuracy needs to be improved for the condition of short wavelength. The influence of angular velocity can be ignored.


2012 ◽  
Vol 81 (6) ◽  
pp. 485-488
Author(s):  
Masanobu TOYODA ◽  
Tsunehisa HANDA

2020 ◽  
Vol 64 (01) ◽  
pp. 61-80
Author(s):  
Ping-Chen Wu ◽  
Md. Alfaz Hossain ◽  
Naoki Kawakami ◽  
Kento Tamaki ◽  
Htike Aung Kyaw ◽  
...  

Ship motion responses and added resistance in waves have been predicted by a wide variety of computational tools. However, validation of the computational flow field still remains a challenge. In the previous study, the flow field around the Korea Research Institute for Ships and Ocean Engineering (KRISO) Very Large Crude-oil Carrier 2 tanker model with and without propeller condition and without rudder condition was measured by the authors, as well as the resistance and self-propulsion tests in waves. In this study, the KRISO container ship model appended with a rudder was used for the higher Froude number .26 and smaller block coefficient .65. The experiments were conducted in the Osaka University towing tank using a 3.2-m-long ship model for resistance and self-propulsion tests in waves. Viscous flow simulation was performed by using CFDShip-Iowa. The wave conditions proposed in Computational Fluid Dynamics (CFD) Workshop 2015 were considered, i.e., the wave-ship length ratio λ/L = .65, .85, 1.15, 1.37, 1.95, and calm water. The objective of this study was to validate CFD results by Experimental Fluid Dynamics (EFD) data for ship vertical motions, added resistance, and wake flow field. The detailed flow field for nominal wake and self-propulsion condition will be analyzed for λ/L = .65, 1.15, 1.37, and calm water. Furthermore, bilge vortex movement and boundary layer development on propeller plane, propeller thrust, and wake factor oscillation in waves will be studied.


Author(s):  
Fabien Bigot ◽  
François-Xavier Sireta ◽  
Eric Baudin ◽  
Quentin Derbanne ◽  
Etienne Tiphine ◽  
...  

Ship transport is growing up rapidly, leading to ships size increase, and particularly for container ships. The last generation of Container Ship is now called Ultra Large Container Ship (ULCS). Due to their increasing sizes they are more flexible and more prone to wave induced vibrations of their hull girder: springing and whipping. The subsequent increase of the structure fatigue damage needs to be evaluated at the design stage, thus pushing the development of hydro-elastic simulation models. Spectral fatigue analysis including the first order springing can be done at a reasonable computational cost since the coupling between the sea-keeping and the Finite Element Method (FEM) structural analysis is performed in frequency domain. On the opposite, the simulation of non-linear phenomena (Non linear springing, whipping) has to be done in time domain, which dramatically increases the computation cost. In the context of ULCS, because of hull girder torsion and structural discontinuities, the hot spot stress time series that are required for fatigue analysis cannot be simply obtained from the hull girder loads in way of the detail. On the other hand, the computation cost to perform a FEM analysis at each time step is too high, so alternative solutions are necessary. In this paper a new solution is proposed, that is derived from a method for the efficient conversion of full scale strain measurements into internal loads. In this context, the process is reversed so that the stresses in the structural details are derived from the internal loads computed by the sea-keeping program. First, a base of distortion modes is built using a structural model of the ship. An original method to build this base using the structural response to wave loading is proposed. Then a conversion matrix is used to project the computed internal loads values on the distortion modes base, and the hot spot stresses are obtained by recombination of their modal values. The Moore-Penrose pseudo-inverse is used to minimize the error. In a first step, the conversion procedure is established and validated using the frequency domain hydro-structure model of a ULCS. Then the method is applied to a non-linear time domain simulation for which the structural response has actually been computed at each time step in order to have a reference stress signal, in order to prove its efficiency.


Author(s):  
Reza Taghipour ◽  
Tristan Perez ◽  
Torgeir Moan

This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms in the mathematical model are replaced by their alternative state-space representations whose parameters are obtained by using the realization theory. The mathematical model is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.


Sign in / Sign up

Export Citation Format

Share Document