Time Domain Hydroelastic Analysis of a Flexible Marine Structure Using State-Space Models

Author(s):  
Reza Taghipour ◽  
Tristan Perez ◽  
Torgeir Moan

This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms in the mathematical model are replaced by their alternative state-space representations whose parameters are obtained by using the realization theory. The mathematical model is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.

Author(s):  
Reza Taghipour ◽  
Tristan Perez ◽  
Torgeir Moan

This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms associated with fluid memory effects are replaced by an alternative state-space representation, the parameters of which are obtained by using realization theory. The mathematical model established is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Parviz Ghadimi ◽  
Abbas Dashtimanesh ◽  
Yaser Faghfoor Maghrebi

Nowadays, most of the dynamic research on planing ships has been directed towards analyzing the ships motions in either 3-DOF (degrees of freedom) mode in the longitudinal vertical plane or in 3-DOF or 4-DOF mode in the lateral vertical plane. For this reason, the current authors have started a research program of describing the dynamic behavior of planing ships in a 6-DOF mathematical model. This program includes the developing of a 6-DOF computer simulation program in the time domain. This type of simulation can be used for predicting the response of these planing vessels to the environmental disturbances during high-speed sailing. In this paper, the development of the mathematical model will be presented. Furthermore, a discussion will be offered about the use of these static contributions in a time domain simulation for modeling the behavior of planing crafts in regular waves.


Author(s):  
Julián Andres Gómez Gómez ◽  
Camilo E. Moncada Guayazán ◽  
Sebastián Roa Prada ◽  
Hernando Gonzalez Acevedo

Abstract Gimbals are mechatronic systems well known for their use in the stabilization of cameras which are under the effect of sudden movements. Gimbals help keeping cameras at previously defined fixed orientations, so that the captured images have the highest quality. This paper focuses on the design of a Linear Quadratic Gaussian, LQG, controller, based on the physical modeling of a commercial Gimbal with two degrees of freedom (2DOF), which is used for first-person applications in unmanned aerial vehicle (UAV). This approach is proposed to make a more realistic representation of the system under study, since it guarantees high accuracy in the simulation of the dynamic response, as compared to the prediction of the mathematical model of the same system. The development of the model starts by sectioning the Gimbal into a series of interconnected links. Subsequently, a fixed reference system is assigned to each link body and the corresponding homogeneous transformation matrices are established, which will allow the calculation of the orientation of each link and the displacement of their centers of mass. Once the total kinetic and potential energy of the mechanical components are obtained, Lagrange’s method is utilized to establish the mathematical model of the mechanical structure of the Gimbal. The equations of motion of the system are then expressed in state space form, with two inputs, two outputs and four states, where the inputs are the torques produced by each one of the motors, the outputs are the orientation of the first two links, and the states are the aforementioned orientations along with their time derivatives. The state space model was implemented in MATLAB’s Simulink environment to compare its prediction of the transient response with the prediction obtained with the representation of the same system using MATLAB’s SimMechanics physical modelling interface. The mathematical model of each one of the three-phase Brushless DC motors is also expressed in state space form, where the three inputs of each motor model are the voltages of the corresponding motor phases, its two outputs are the angular position and angular velocity, and its four states are the currents in two of the phases, the orientation of the motor shaft and its rate of change. This model is experimentally validated by performing a switching sequence in both the simulation model and the physical system and observing that the transient response of the angular position of the motor shaft is in accordance with the theoretical model. The control system design process starts with the interconnection of the models of the mechanical components and the models of the Brushless DC Motor, using their corresponding state space representations. The resulting model features six inputs, two outputs and eight states. The inputs are the voltages in each phase of the two motors in the Gimbal, the outputs are the angular positions of the first two links, and the states are the currents in two of the phases for each motor and the orientations of the first two links, along with their corresponding time derivatives. An optimal LQG control system is designed using MATLAB’s dlqr and Kalman functions, which calculate the gains for the control system and the gains for the states estimated by the observer. The external excitation in each of the phases is carried out by pulse width modulation. Finally, the transient response of the overall system is evaluated for different reference points. The simulation results show very good agreement with the experimental measurements.


1997 ◽  
Vol 119 (3) ◽  
pp. 151-157 ◽  
Author(s):  
Y.-L. Hwang

This paper presents a time domain analysis approach to evaluate the dynamic behavior of the catenary anchor leg mooring (CALM) system under the maximum operational condition when a tanker is moored to the terminal, and in the survival condition when the terminal is not occupied by a tanker. An analytical model, integrating tanker, hawser, buoy, and mooring lines, is developed to dynamically predict the extreme mooring loads and buoy orbital motions, when responding to the effect of wind, current, wave frequency, and wave drift response. Numerical results describing the dynamic behaviors of the CALM system in both shallow and deepwater situations are presented and discussed. The importance of the line dynamics and hawser coupled buoy-tanker dynamics is demonstrated by comparing the present dynamic analysis with catenary calculation approach. Results of the analysis are compared with model test data to validate the mathematical model presented.


Author(s):  
Rameesha Thayale Veedu ◽  
Parameswaran Krishnankutty

Ship maneuvering performance is usually predicted in calm water conditions, which provide valuable information about ship’s turning ability and its directional stability in the early design stages. Investigation of maneuvering simulation in waves is more realistic since the ship usually sails through waves. So it is important to study the effect of waves on the turning ability of a ship. This paper presents the maneuvering simulation for a container ship in presence of regular waves based on unified state space model for ship maneuvering. Standard maneuvers like turning circle and zigzag maneuver are simulated for the head sea condition and the same are compared with calm water maneuvers. The present study shows that wave significantly affects the maneuvering characteristics of the ship and hence cannot be neglected.


Author(s):  
Durga Devi R. ◽  
Nageswari S.

Purpose The purpose of this paper is to propose a mathematical model for voltage super-lift dc-dc power converter in continuous conduction mode (CCM). Using the presented mathematical model, the analysis of dynamics of power stage for voltage super-lift dc-dc power converter can be performed. Design/methodology/approach The proposed method is based on the average state space model using the state equations of the dc-dc power converter. In the proposed method, the converter is represented as a set of differential equations derived for each switching state of the power switch in terms of inductor current and capacitor voltage. The proposed method describes the dynamic behaviour of the system. The controller is designed to meet performance requirement of the system such as to maintain the dynamics such as stability, steady-state accuracy and the speed of response of the system. Using the obtained model, the analysis of dynamic response of the voltage super-lift dc-dc power converter can be performed. Findings The converter is modelled and verified using conventional circuit analysis method employing state-space averaging technique, and their corresponding transfer function is also derived. The dynamics of the converter is investigated using frequency response characteristics obtained using MATLAB programming environment. In addition, to improve the stability of the converter, proportional-integral controller is designed using Ziegler–Nichols tuning rules, and the effect of the compensator in the plant is also investigated. Originality/value The proposed method can be used for analysing the dynamics of power stage for voltage super-lift DC-DC power converter.


2017 ◽  
Vol 69 ◽  
pp. 428-440 ◽  
Author(s):  
Clayton R. Marqui ◽  
Douglas D. Bueno ◽  
Luiz C.S. Goes ◽  
Paulo J.P. Gonçalves

1974 ◽  
Vol 11 (4) ◽  
pp. 367-376 ◽  
Author(s):  
V. Jørgensen

The Ball-balancing Systems is intended to demonstrate the basic concepts in the state-space control theory in the graduate education. The physical properties of the system are stated and the mathematical model is evaluated. Conditions of stability are discussed.


Sign in / Sign up

Export Citation Format

Share Document