Nonlinear flow-induced vibration response characteristics of a tubing string in HPHT oil&gas well

2020 ◽  
pp. 102468
Author(s):  
Xiaoqiang Guo ◽  
Jun Liu ◽  
Guorong Wang ◽  
Liming Dai ◽  
Dake Fang ◽  
...  
2011 ◽  
Vol 117-119 ◽  
pp. 241-246
Author(s):  
Zhen Hai Gao ◽  
Gen Hua Yan ◽  
Peng Liu ◽  
Fa Zhan Chen ◽  
Fei Ming Lv

In this paper we conduct study on flow-induced vibration of large-span upwelling radial steel Gate and its hydraulic hoist. Place an emphasis on vibration response characteristics under two working conditions of diversion and drainage, which proves the safety of hydraulic hoist gate vibration caused by gate vibration. Firstly, we study on dynamic characteristics of fluid-structure interaction of association system of gate and start and stop lever, reveals the discipline of the effect fluid having on structural dynamic characteristics. On this basis, flow-induced vibration characteristics under two conditions of with and without start and stop lever action considered. The results indicate that the gate vibration response with hydraulic hoist used decreases, which explains start and stop lever has certain effect of restraining vibration on gate vibration. In addition, under the working condition of drainage the vibration magnitude of start and stop lever is smaller than that of gate body, which explains there is damping action during transference of gate vibration through start and stop lever. The results find out that on the assumption of optimized gate structure and hydraulic arrangement, it is practicable, safe and reliable to adopt hydraulic hoist. The achievement has directive significance on similar projects construction in the future


2020 ◽  
Vol 81 ◽  
pp. 50-69 ◽  
Author(s):  
Jun Liu ◽  
Xiaoqiang Guo ◽  
Guorong Wang ◽  
Qingyou Liu ◽  
Dake Fang ◽  
...  

SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1470-1476 ◽  
Author(s):  
Ebrahim Hajidavalloo ◽  
Saeed Alidadi Dehkohneh

Summary When a blowout oil/gas well catches fire, usually a flow tube is used to detach the fire from the wellhead and provide appropriate conditions for operating team members to approach the well and install the blowout-preventer (BOP) cap. Using the flow tube above the wellhead creates powerful suction around the tube that may jeopardize the safety of crew members. To reduce the power of suction around the well, a new perforated flow tube instead of simple flow tube was introduced. To understand the effect of this new type of flow tube, modeling and simulation of the flow field around the blowout well were performed for both simple and perforated types of flow tube with Fluent 6.3.26 (2003) and Gambit 2.3.16 (2003) softwares. Different parameters around the well mouth were compared in both designs. The results showed that using the perforated flow tube decreases the vacuum around the well by 33% compared with the simple flow tubes. Thus, application of the perforated flow tube can be recommended in well-control operations for safety measures.


Author(s):  
Yaojun Lu ◽  
Chun Liang ◽  
Juan J. Manzano-Ruiz ◽  
Kalyana Janardhanan ◽  
Yeong-Yan Perng

This paper presents a multiphysics approach for characterizing flow-induced vibrations (FIVs) in a subsea jumper subject to internal production flow, downstream slug, and ocean current. In the present study, the physical properties of production fluids and associated slugging behavior were characterized by pvtsim and olga programs under real subsea condition. Outcomes of the flow assurance studies were then taken as inputs of a full-scale two-way fluid–structure interaction (FSI) analysis to quantify the vibration response. To prevent onset of resonant risk, a detailed modal analysis has also be carried out to determine the modal shapes and natural frequencies. Such a multiphysics approach actually integrated the best practices currently available in flow assurance (olga and pvtsim), computational fluid dynamics (CFD), finite element analysis (FEA), and modal analysis, and hence provided a comprehensive solution to the FSI involved in a subsea jumper. The corresponding results indicate that both the internal production flow, downstream slugs, and the ocean current would induce vibration response in the subsea jumper. Compared to the vortex-induced vibration (VIV) due to the ocean current and the FIV due to the internal production flow, pressure fluctuation due to the downstream slug plays a dominant role in generating excessive vibration response and potential fatigue failure in the subsea jumper. Although the present study was mainly focused on the subsea jumper, the same approach can be applied to other subsea components, like subsea flowline, subsea riser, and other subsea production equipment.


2012 ◽  
Vol 226-228 ◽  
pp. 13-16
Author(s):  
Xin Wang ◽  
Shao Ze Luo

In order to study the flow-induced vibration of the spillway tunnel working gate of one reservoir, hydraulic model test with scale 1:20 was conducted to obtain the dynamic pressure characteristics on the working gate. Experiment modal analysis method was employed to identify the structure dynamic characteristics through the 1:10 working gate mode test. The 3D FEM model of the gate was built to simulate the vibration response of the structure. The research showed the low order modal frequencies of the working gate were not fully breaking away from the high energy zone of the dynamic water, which would induce severe vibration. The vibration response of the gate became the biggest when it was operating at 0.5 partial opening.


Author(s):  
Mohamad Hazwan Mohd Ghazali ◽  
Ahmad Zhafran Ahmad Mazlan ◽  
Muhammad Aqil Azman ◽  
Mohd Hafiz Zawawi ◽  
Mohd Rashid Mohd Radzi

Sign in / Sign up

Export Citation Format

Share Document