scholarly journals A fully nonlinear potential flow wave modelling procedure for simulations of offshore sea states with various wave breaking scenarios

2021 ◽  
Vol 117 ◽  
pp. 102898
Author(s):  
Weizhi Wang ◽  
Csaba Pákozdi ◽  
Arun Kamath ◽  
Hans Bihs
Author(s):  
Zaibin Lin ◽  
Ling Qian ◽  
Wei Bai ◽  
Zhihua Ma ◽  
Hao Chen ◽  
...  

Abstract A 3-Dimensional numerical wave tank based on the fully nonlinear potential flow theory has been developed in OpenFOAM, where the Laplace equation of velocity potential is discretized by Finite Volume Method. The water surface is tracked by the semi-Eulerian-Lagrangian method, where water particles on the free surface are allowed to move vertically only. The incident wave is generated by specifying velocity profiles at inlet boundary with a ramp function at the beginning of simulation to prevent initial transient disturbance. Additionally, an artificial damping zone is located at the end of wave tank to sufficiently absorb the outgoing waves before reaching downstream boundary. A five-point smoothing technique is applied at the free surface to eliminate the saw-tooth instability. The proposed wave model is validated against theoretical results and experimental data. The developed solver could be coupled with multiphase Navier-Stokes solvers in OpenFOAM in the future to establish an integrated versatile numerical wave tank for studying efficiently wave structure interaction problems.


Author(s):  
Karsten Trulsen ◽  
Per Teigen

A detailed description of a fully nonlinear numerical method for computing wave interaction effects around arbitrary marine structures is presented. The paper highlights application to one specific geometry: A single, fixed vertical truncated cylinder. The fully nonlinear computations are compared with linear and second-order nonlinear results obtained with the perturbation approach, as well as with experiments.


Author(s):  
Weizhi Wang ◽  
Csaba Pakozdi ◽  
Arun Kamath ◽  
Hans Bihs

Abstract Stochastic wave properties are crucial for the design of offshore structures. Short-crested seas are commonly seen at the sites of offshore structures, especially during storm events. A long time duration is required in order to obtain the statistical properties, which is challenging for numerical simulations because of the high demand of computational resources. In this scenario, a potential flow solver is ideal due to its computational efficiency. A procedure of producing accurate representation of short-crested sea states using the open-source fully nonlinear potential flow model REEF3D::FNPF is presented in the paper. The procedure examines the sensitivity of the resolutions in space and time as well as the arrangements of wave gauge arrays. A narrow band power spectrum and a mildly spreading directional spreading function are simulated, and an equal energy method is used to generate input waves to avoid phase-locking. REEF3D::FNPF solves the Laplace equation together with the boundary conditions using a finite difference method. A sigma grid is used in the vertical direction and the vertical grid clustering follows the principle of constant truncation error. High-order discretisation methods are implemented in space and time. Message passing interface is used for high performance computation using multiple processors. Three-hour simulations are performed in full-scale at a hypothetic offshore site with constant water depth. The significant wave height, peak period, kurtosis, skewness and ergodicity are examined in the numerically generated wave field. The stochastic wave properties in the numerical wave tank (NWT) using REEF3D::FNPF match the input wave conditions with high fidelity.


2019 ◽  
Vol 154 ◽  
pp. 103579 ◽  
Author(s):  
Christos E. Papoutsellis ◽  
Marissa L. Yates ◽  
Bruno Simon ◽  
Michel Benoit

Author(s):  
Bo Terp Paulsen ◽  
Henrik Bredmose ◽  
Harry B. Bingham ◽  
Signe Schløer

Two-dimensional irregular waves on a sloping bed and their impact on a bottom mounted circular cylinder is modeled by three different numerical methods and the results are validated against laboratory experiments. We here consider the performance of a linear-, a fully nonlinear potential flow solver and a fully nonlinear Navier-Stokes/VOF solver. The validation is carried out in terms of both the free surface elevation and the inline force. Special attention is paid to the ultimate load in case of a single wave event and the general ability of the numerical models to capture the higher harmonic forcing. The test case is representative for monopile foundations at intermediate water depths. The potential flow computations are carried out in a two-dimensional vertical plane and the inline force on the cylinder is evaluated by the Morison equation. The Navier-Stokes/VOF computations are carried out in three-dimensions and the force is obtained by spatial pressure integration over the wettet area of the cylinder. In terms of both the free surface elevation and the inline force, the linear potential flow model is shown to be of limited accuracy and large deviations are generally seen when compared to the experimental measurements. The fully nonlinear Navier-Stokes/VOF computations are accurately predicting both the free surface elevation and the inline force. However, the computational cost is high relative to the potential flow solvers. Despite the fact that the nonlinear potential flow model is carried out in two-dimensions it is shown to perform just as good as the three-dimensional Navier-Stokes/VOF solver. This is observed for both the free surface elevation and the inline force, where both the ultimate load and the higher harmonic forces are accurately predicted. This shows that for moderately steep irregular waves a Morison equation combined with a fully nonlinear two-dimensional potential flow solver can be a good approximation.


Author(s):  
Dylan Barratt ◽  
Ton Stefan van den Bremer ◽  
Thomas Alan Adcock Adcock

AbstractWe simulate focusing surface gravity wave groups with directional spreading using the modified nonlinear Schrödinger (MNLS) equation and compare the results with a fully-nonlinear potential flow code, OceanWave3D. We alter the direction and characteristic wavenumber of the MNLS carrier wave, to assess the impact on the simulation results. Both a truncated (fifth-order) and exact version of the linear dispersion operator are used for the MNLS equation. The wave groups are based on the theory of quasi-determinism and a narrow-banded Gaussian spectrum. We find that the truncated and exact dispersion operators both perform well if: (1) the direction of the carrier wave aligns with the direction of wave group propagation; (2) the characteristic wavenumber of the carrier wave coincides with the initial spectral peak. However, the MNLS simulations based on the exact linear dispersion operator perform significantly better if the direction of the carrier wave does not align with the wave group direction or if the characteristic wavenumber does not coincide with the initial spectral peak. We also perform finite-depth simulations with the MNLS equation for dimensionless depths ($$k_{\text {p}}d$$ k p d ) between 1.36 and 5.59, incorporating depth into the boundary conditions as well as the dispersion operator, and compare the results with those of fully-nonlinear potential flow code to assess the finite-depth limitations of the MNLS.


Sign in / Sign up

Export Citation Format

Share Document