Numerical simulation on the breakup of an ice sheet induced by regular incident waves

2022 ◽  
Vol 120 ◽  
pp. 103024
Author(s):  
Kangjian He ◽  
Baoyu Ni ◽  
Xuesong Xu ◽  
Hongyu Wei ◽  
Yanzhuo Xue
1990 ◽  
Vol 34 (02) ◽  
pp. 105-122
Author(s):  
Hideaki Miyata ◽  
Makoto Kanai ◽  
Noriaki Yoshiyasu ◽  
Yohichi Furuno

The diffraction of regular waves by advancing wedge models is studied both experimentally and numerically. The nonlinear features of diffracted waves are visualized by wave pattern pictures and the formation is analyzed by the grid-projection method. The experimental observation indicates that the diffracted waves have a number of nonlinear characteristics similar to shock waves due to the interaction of incident waves with the advancing obstacle in the flow-field caused by the advancing motion. Bow waves of both oblique type and normal detached type are observed at remarkably lower Froude numbers than in the case of a ship in steady advance motion. Their occurrence systematically depends on the Froude number and the wedge angle. The numerical simulation of this phenomenon by a finite-difference method shows approximate agreement with the experimental results.


1982 ◽  
Vol 28 (99) ◽  
pp. 267-272 ◽  
Author(s):  
D. D. Kvasov ◽  
M. Ya. Verbitsky

AbstractA non-linear parabolic equation describing the evolution of an isothermal linearly viscous ice sheet is numerically solved in non-dimensional coordinates obtained by normalization over the horizontal size of a glacier. The horizontal size of the ice sheet is defined from the solution of an ordinary differential equation, the integral mass balance. For simple climate models, approximate relations describing the evolution of glaciers are proposed. These relations and palaeogeographical data are used to estimate changes in the mass balance on the surface of the Scandinavian and Laurentide ice sheets during retreat of the last glaciation.


Author(s):  
Katsunari Fujioka ◽  
Yasunori Nihei ◽  
Marc Le Boulluec

In this paper, we will discuss the concept of combined utilization of offshore wind and wave energy in terms of both tank test and numerical simulation. There are some possibility that combined utilization of ocean renewable energies can avoid some disadvantages that single utilization of them may have, such as cost problem associated with the stability of power and power supply. In this study, we focus on the motion of an offshore wind turbine in waves associated to wave energy converters, are installed in the same area in order to improve its motion by reducing the effect of incident waves. We carried out wave tank test and numerical simulation, and investigated the motion of wind turbine in waves. In addition, numerical simulation allows to visualize the wave fields around those devices. Appropriate arrangement of them is discussed for the most efficient utilization of offshore wind and wave energy.


1982 ◽  
Vol 28 (99) ◽  
pp. 267-272
Author(s):  
D. D. Kvasov ◽  
M. Ya. Verbitsky

AbstractA non-linear parabolic equation describing the evolution of an isothermal linearly viscous ice sheet is numerically solved in non-dimensional coordinates obtained by normalization over the horizontal size of a glacier. The horizontal size of the ice sheet is defined from the solution of an ordinary differential equation, the integral mass balance. For simple climate models, approximate relations describing the evolution of glaciers are proposed. These relations and palaeogeographical data are used to estimate changes in the mass balance on the surface of the Scandinavian and Laurentide ice sheets during retreat of the last glaciation.


2009 ◽  
Vol 00 (00) ◽  
pp. 090904073309027-8
Author(s):  
H.W. Wang ◽  
S. Kyriacos ◽  
L. Cartilier

Sign in / Sign up

Export Citation Format

Share Document