Prediction of two-phase heat transfer in a 4-pass evaporator bundle using single tube experimental data

2004 ◽  
Vol 24 (5-6) ◽  
pp. 791-811 ◽  
Author(s):  
Mustafa K Yanik ◽  
Ralph L Webb
Author(s):  
O.V. Abyzov ◽  
Yu.V. Galyshev ◽  
A.K. Ivanov

Liquid cooling of cylinder and piston parts in highly boosted internal combustion engines is generally accompanied by local phase transition phenomena, such as surface nucleate boiling. The heat transfer coefficient of nucleate boiling is several times higher than that of single-phase convection. In order to efficiently exploit the thermal effect of nucleate boiling in cooling systems, simultaneously preventing emergency supercritical modes, a deeper understanding of boiling physics based on full-scale experiments is required. We conducted experimental investigation of heat transfer in a simulated cooling duct of a piston engine cylinder head, using a bespoke motor-free installation. We studied the effects of velocity, flow character and coolant type on the heat transfer, accounting for the presence of congestion regions. Over the course of the experiment, we simulated thermal conditions characteristic of different heat transfer types: single-phase convection, nucleate boiling, the onset of boiling crisis. We used the experimental data to plot the coolant heat flow density as a function of wall temperature for different measuring points situated inside the stream and the turbulent flow regions (congestion regions). We show that the mature nucleate boiling mode is the most favourable in terms of how uniform the temperature field within a part is. The experimental data obtained during the investigation may be used to verify mathematical simulations in the two-phase heat transfer theory, provided the data have been appropriately processed


Equipment ◽  
2006 ◽  
Author(s):  
Leonid L. Vasiliev ◽  
A. Zhuravlyov ◽  
A. Shapovalov ◽  
L. L. Vasiliev, Jr

2005 ◽  
Vol 127 (10) ◽  
pp. 1106-1114 ◽  
Author(s):  
Ali Koşar ◽  
Chih-Jung Kuo ◽  
Yoav Peles

Boiling flow of deionized water through 227μm hydraulic diameter microchannels with 7.5μm wide interconnected reentrant cavities at 47 kPa exit pressure has been investigated. Average two-phase heat transfer coefficients have been obtained over effective heat fluxes ranging from 28 to 445W∕cm2 and mass fluxes from 41 to 302kg∕m2s. A map is developed that divides the data into two regions where the heat transfer mechanisms are nucleation or convective boiling dominant. The map is compared to similar atmospheric exit pressure data developed in a previous study. A boiling mechanism transition criterion based on the Reynolds number and the Kandlikar k1 number is proposed.


2011 ◽  
Vol 236-238 ◽  
pp. 2660-2663
Author(s):  
Xiao Liu ◽  
Wei Tan ◽  
Yu Bu ◽  
Yu Jin Liu ◽  
Ze Jun Wang

An accident instantaneous release of LPG can results in a rapidly expanding two-phase flammable cloud, which is the medium of potentially disastrous consequences. In this paper, CFD (Computational Fluid Dynamics) method was applied for instantaneous LPG release in an open environment in order to analysis the expansion process of two-phase cloud. The results from simulation are compared with the published experimental data to validate the model. Statistical analysis of experimental data is used to set the initial conditions and computational inlet in the model. The mass and heat transfer is calculated in eulerian-lagrangian method. The features in expansion process are studied by the analyses of the variation of size, temperature, volume averaged rate of evaporation of the cloud and entropy of the whole flow field.


Sign in / Sign up

Export Citation Format

Share Document