Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management

2008 ◽  
Vol 28 (5-6) ◽  
pp. 556-565 ◽  
Author(s):  
A. Pasupathy ◽  
L. Athanasius ◽  
R. Velraj ◽  
R.V. Seeniraj
2013 ◽  
Vol 59 (4) ◽  
pp. 483-497 ◽  
Author(s):  
D. Prakash ◽  
P. Ravikumar

Abstract In this paper, transient analysis on heat transfer across the residential building roof having various materials like wood wool, phase change material and weathering tile is performed by numerical simulation technique. 2-dimensional roof model is created, checked for grid independency and validated with the experimental results. Three different roof structures are included in this study namely roof with (i). Concrete and weathering tile, (ii). Concrete, phase change material and weathering tile and (iii). Concrete, phase change material, wood wool and weathering tile. Roof type 3 restricts 13% of heat entering the room in comparison with roof having only concrete and weathering tile. Also the effect of various roof layers’ thickness in the roof type 3 is investigated and identified that the wood wool plays the major role in arresting the entry of heat in to the room. The average reduction of heat is about 10 % for an increase of a unit thickness of wood wool layer.


2010 ◽  
Vol 14 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Weijan Shen ◽  
Fock-Lai Tan

This paper presents the experimental study of using phase change material in the cooling of the mobile devices. It investigates the thermal performance of transient charging and discharging of mobile devices in three different situations; making phone calls frequently, making long duration calls, and making occasional calls. The results show that mobile devices are heated up fastest during the long duration usage. Experiments are also conducted to determine the effect of fins and effect of orientation of the mobile device on its thermal performance.


Sign in / Sign up

Export Citation Format

Share Document