Numerical and experimental study on effects of fuel injection timings on combustion and emission characteristics of a direct-injection spark-ignition gasoline engine with a 50 MPa fuel injection system

2018 ◽  
Vol 144 ◽  
pp. 890-900 ◽  
Author(s):  
Taehoon Kim ◽  
Jingeun Song ◽  
Junkyu Park ◽  
Sungwook Park
Author(s):  
Michael McGhee ◽  
Ziman Wang ◽  
Alexander Bech ◽  
Paul J Shayler ◽  
Dennis Witt

The changes in thermal state, emissions and fuel economy of a 1.0-L, three-cylinder direct injection spark ignition engine when a cylinder is deactivated have been explored experimentally. Cylinder deactivation improved engine fuel economy by up to 15% at light engine loads by reducing pumping work, raising indicated thermal efficiency and raising combustion efficiency. Penalties included an increase in NOx emissions and small increases in rubbing friction and gas work losses of the deactivated cylinder. The cyclic pressure variation in the deactivated cylinder falls rapidly after deactivation through blow-by and heat transfer losses. After around seven cycles, the motoring loss is ~2 J/cycle. Engine structural temperatures settle within an 8- to 13-s interval after a switch between two- and three-cylinder operation. Engine heat rejection to coolant is reduced by ~13% by deactivating a cylinder, extending coolant warm-up time to thermostat-opening by 102 s.


Author(s):  
N Kalian ◽  
H Zhao ◽  
J Qiao

Controlled auto-ignition (CAI) combustion, also known as homogeneous charge compression ignition (HCCI), can be achieved by trapping residuals with early exhaust valve closure in a direct-fuel-injection in-cylinder four-stroke gasoline engine (through the employment of low-lift cam profiles). Because the operating region is limited to low-load and midload operation for CAI combustion with a low-lift cam profile, it is important to be able to operate spark ignition (SI) combustion at high loads with a normal cam profile. A 3.0l prototype engine was modified to achieve CAI combustion, using a cam profile switching mechanism that has the capability to switch between high- and low-lift cam profiles. A strategy was used where a high-lift profile could be used for SI combustion and a low-lift profile was used for CAI combustion. Initial analysis showed that for a transition from SI to CAI combustion, misfire occurred in the first CAI transitional cycle. Subsequent experiments showed that the throttle opening position and switching time could be controlled to avoid misfire. Further work investigated transitions at different loads and from CAI to SI combustion.


Sign in / Sign up

Export Citation Format

Share Document