Techno-economic analysis of waste heat recovery systems for wet-cooled combined cycle power plants

2018 ◽  
Vol 143 ◽  
pp. 746-758 ◽  
Author(s):  
Achyut Paudel ◽  
Todd Bandhauer
Author(s):  
Kwangkook Jeong

A section to delineate ‘waste heat recovery’ has been written to contribute for the ASME Power Plant Cooling Specification/Decision-making Guide to be published in 2013. This paper informs tentative contents for the section on how to beneficially apply waste heat and water recovery technology into power plants. This paper describes waste heat recovery in power plant, current/innovative technologies, specifications, case study, combined cycle, thermal benefits, effects on system efficiency, economic and exergetic benefits. It also outlines water recovery technologies, benefits in fresh water consumptions, reducing acids emission, additional cooling effects, economic analysis and critical considerations.


2021 ◽  
Vol 281 ◽  
pp. 124372 ◽  
Author(s):  
Houzhang Tan ◽  
Ruijie Cao ◽  
Shunsen Wang ◽  
Yibin Wang ◽  
Shuanghui Deng ◽  
...  

2015 ◽  
Vol 1092-1093 ◽  
pp. 491-497 ◽  
Author(s):  
Jing Hui Song ◽  
Yan Lin ◽  
Yan Fen Liao ◽  
Xiao Qian Ma ◽  
Shu Mei Wu

The data of wet flue gas desulfurization (WFGD) power and water consumption, from two different coal-fired power plants (100 MW and 1000 MW) under full load operation, are studied for the WFGD economic analysis of waste-heat-recovery transformation with the installation of low pressure economizer (LPE). The results of 100MW unit show that, WFGD inlet flue gas temperature drops from 155°C to 110°C, the benefits generated include power consumption of fans declines by 23.85% and water consumption of the smoke desulfurization absorption tower declines by 34.88%. In another case, the temperature of inlet flue gas from WFGD of 1000 MW unit drops from 130°C to 84°C, power consumption of fans increases by 15.04% while water consumption of the smoke desulfurization absorption tower declines by 73.1%. Besides, the flow resistance is increased in LPE water side due to the installation of LPE. This makes power consumption of condensate pump enhanced, which slightly decreases the benefits from waste heat recovery.


2019 ◽  
Vol 150 ◽  
pp. 200-209 ◽  
Author(s):  
Min Yan ◽  
Chunyuan Ma ◽  
Qiuwan Shen ◽  
Zhanlong Song ◽  
Jingcai Chang

Author(s):  
Antonio Agresta ◽  
Antonella Ingenito ◽  
Roberto Andriani ◽  
Fausto Gamma

Following the increasing interest of aero-naval industry to design and build systems that might provide fuel and energy savings, this study wants to point out the possibility to produce an increase in the power output from the prime mover propulsion systems of aircrafts. The complexity of using steam heat recovery systems, as well as the lower expected cycle efficiencies, temperature limitations, toxicity, material compatibilities, and/or costs of organic fluids in Rankine cycle power systems, precludes their consideration as a solution to power improvement for this application in turboprop engines. The power improvement system must also comply with the space constraints inherent with onboard power plants, as well as the interest to be economical with respect to the cost of the power recovery system compared to the fuel that can be saved per flight exercise. A waste heat recovery application of the CO2 supercritical cycle will culminate in the sizing of the major components.


Sign in / Sign up

Export Citation Format

Share Document