High load expansion with low emissions and the pressure rise rate by dual-fuel combustion

2018 ◽  
Vol 144 ◽  
pp. 437-443 ◽  
Author(s):  
Sanghyun Chu ◽  
Jeongwoo Lee ◽  
Jaegu Kang ◽  
Yoonwoo Lee ◽  
Kyoungdoug Min
2019 ◽  
pp. 146808741989238
Author(s):  
Prabhat R Jha ◽  
Sundar R Krishnan ◽  
Kalyan K Srinivasan

This work experimentally examines the effect of methane (a natural gas surrogate) substitution on early injection dual fuel combustion at representative low loads of 3.3 and 5.0 bar BMEPs in a single-cylinder compression ignition engine. Gaseous methane fumigated into the intake manifold at various methane energy fractions was ignited using a high-pressure diesel pilot injection at 310 °CA. For the 3.3 bar BMEP, methane energy fraction sweeps from 50% to 90% were performed; while at 5.0 bar BMEP, methane energy fraction sweeps from 70% to 90% were performed. It is observed that minimum methane energy fraction is limited by maximum pressure rise rate leading to knock and maximum methane energy fraction is limited by a high coefficient of variation in netIMEP, which leads to high cyclic variations. For 3.3 bar BMEP, maximum pressure rise rate is 8 bar/°CA at 50% methane energy fraction while at 5 bar BMEP, it is 12 bar/°CA at 70% methane energy fraction. For 3.3 bar BMEP, engine-out NOx emissions decrease by 43 times when methane energy fraction increases from 50% to 90%, and it decreases by nearly 46 times when methane energy fraction increases from 70% to 90% at 5 bar BMEP. Engine-out unburned hydrocarbon emissions increase by nearly 9 times when methane energy fraction increases from 50% to 90% at 3.3 bar BMEP, and it increases by nearly 5 times when methane energy fraction increases from 70% to 90% at 5.0 bar BMEP. Engine-out carbon monoxide emissions increase by nearly 7 times when methane energy fraction increases from 50% to 90% at 3.3 bar BMEP and by nearly 5 times when methane energy fraction increases from 70% to 90% at 5.0 bar BMEP. In addition, cyclic combustion variations at both loads were analyzed to obtain further insights into the combustion process and identify opportunities to further improve fuel conversion efficiencies at low load operation.


Author(s):  
Mohamed Y. E. Selim ◽  
M. S. Radwan ◽  
H. E. Saleh

The use of Jojoba Methyl Ester as a pilot fuel was investigated for almost the first time as a way to improve the performance of dual fuel engine running on natural gas or LPG at part load. The dual fuel engine used was Ricardo E6 variable compression diesel engine and it used either compressed natural gas (CNG) or liquefied petroleum gas (LPG) as the main fuel and Jojoba Methyl Ester as a pilot fuel. Diesel fuel was used as a reference fuel for the dual fuel engine results. During the experimental tests, the following have been measured: engine efficiency in terms of specific fuel consumption, brake power output, combustion noise in terms of maximum pressure rise rate and maximum pressure, exhaust emissions in terms of carbon monoxide and hydrocarbons, knocking limits in terms of maximum torque at onset of knocking, and cyclic data of 100 engine cycle in terms of maximum pressure and its pressure rise rate. The tests examined the following engine parameters: gaseous fuel type, engine speed and load, pilot fuel injection timing, pilot fuel mass and compression ratio. Results showed that using the Jojoba fuel with its improved properties has improved the dual fuel engine performance, reduced the combustion noise, extended knocking limits and reduced the cyclic variability of the combustion.


2021 ◽  
pp. 146808742098510
Author(s):  
Carlos Guardiola ◽  
Benjamín Pla ◽  
Pau Bares ◽  
Alvin Barbier

Premixed combustion strategies have the potential to achieve high thermal efficiency and to lower the engine-out emissions such as NOx. However, the combustion is initiated at several kernels which create high pressure gradients inside the cylinder. Similarly to knock in spark ignition engines, these gradients might be responsible of important pressure oscillations with a harmful potential for the engine. This work aims to analyze the in-cylinder pressure oscillations in a dual-fuel combustion engine and to determine the feedback variables, control actuators, and control approach for a safe engine operation. Three combustion modes were examined: fully, highly, and partially premixed, and three indexes were analyzed to characterize the safe operation of the engine: the maximum pressure rise rate, the ringing intensity, and the maximum amplitude of pressure oscillations (MAPO). Results show that operation constraints exclusively based on indicators such as the pressure rise rate are not sufficient for a proper limitation of the in-cylinder pressure oscillations. This paper explores the use of a knock-like controller for maintaining the resonance index magnitude under a predefined limit where the gasoline fraction and the main injection timing were selected as control variables. The proposed strategy shows the ability to maintain the percentage of cycles exceeding the specified limit at a desired threshold at each combustion mode in all the cylinders.


Author(s):  
Chaitanya Kavuri ◽  
Sage L. Kokjohn

Mixed mode combustion strategies have shown great potential to achieve high load operation but soot emissions were found to be problematic. A recent study investigating soot emissions in such strategies showed that delaying the load extension injection sufficiently late after the primary heat release makes the soot production dependent solely on the temperature field inside the combustion chamber and eliminates any dependence on mixing time and oxygen availability. The current study focuses on furthering this research to identify a feasible operating space to operate in and enable high load operation with this mixed mode combustion strategy. A PCI combustion event was achieved using a premixed charge of gasoline (early cycle injection) and a load extension injection of gasoline was added near top dead center. CFD modeling considering polycyclic aromatic hydrocarbon (PAH) chemistry up to pyrene was used to perform a full factorial design of experiments (DOE) to study the effects of premixed fuel fraction (fraction of total fuel that is premixed), load extension injection timing and exhaust gas recirculation (EGR). The early injection timings for EGR rates less than 40% showed a soot-NOx tradeoff which constrained operating with SOI timings before TDC. The late injection timings showed reductions in soot and NOx at the expense of gross indicated efficiency (GIE). GIE increased with increasing premixed fuel until the premixed fuel quantity reached 80% of the total fuel mass. Premixed fuel quantities higher than 80% resulted in an efficiency penalty due to increased wall heat transfer losses resulting from early combustion phasing. However, at premixed fuel quantities close to 80%, the peak pressure rise rate became the dominating constraint. This confined the feasible operating space to a premix fuel mass range of 70% to 80%. For this premix fuel mass range, the feasible operating space had two regions; one in the early SOI regime before TDC at EGR rates higher than 38% and the other in the late SOI regime (SOI > 15° ATDC) across the entire EGR space. The study was repeated by splitting the premixed fuel into an early cycle injection and a stratified injection with SOI timing of −70° ATDC. The ratio of fuel in the two injections was varied in the DOE. The results showed that adding a stratified injection increases the ignition delay due to in-cylinder equivalence ratio stratification and relaxes the pressure rise rate effect on the operating space. This allows operation at high premix fuel quantities of 70% and higher with EGR rates less than 40% which yields significant increase in GIE. It was also identified that by targeting the fuel from the stratified injection into the squish region, there is improved oxygen availability in the bowl for the load extension injection, which results in the reduction of soot emissions. This allows the load extension injection to be brought closer to TDC while meeting the soot constraint, which further improves the GIE. Finally, the results from the study were used to demonstrate high load operation at 20 bar and 1300 rpm.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Chaitanya Kavuri ◽  
Sage L. Kokjohn

A mixed mode combustion strategy with a premixed compression ignition (PCI) combustion event and a mixing controlled load extension injection was investigated in the current study. Computational fluid dynamics (CFD) modeling was used to perform a full factorial design of experiments (DOE) to study the effects of premixed fuel fraction, load extension injection timing, and exhaust gas recirculation (EGR). The goal of the study was to identify a feasible operating space and demonstrate a pathway to enable high-load operation with the mixed mode combustion strategy. The gross-indicated efficiency (GIE) increased with premix fraction, but the maximum premix fraction was constrained by pressure rise rate which confined the feasible operating space to a premix fuel mass range of 70–80%. Injecting part of the premixed fuel as a stratified injection relieved the pressure rise rate constraint considerably through in-cylinder equivalence ratio stratification. This allowed operation with premix fuel mass of 70% and higher and EGR rates less than 40% which resulted in improved GIE of the late cycle injection cases. It was also identified that by targeting the fuel from the stratified injection into the squish region, there is improved oxygen availability in the bowl for the load extension injection, which resulted in reduced soot emissions. This allowed the load extension injection to be brought closer to top dead center while meeting the soot constraint, which further improved the GIE. Finally, the results from the study were used to demonstrate high-load operation at 20 bar and 1300 rev/min.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 755
Author(s):  
Peng Zhang ◽  
Jimin Ni ◽  
Xiuyong Shi ◽  
Sheng Yin ◽  
Dezheng Zhang

The gasoline/natural gas dual-fuel combustion mode has been found to have unique advantages in combustion. The ignition timing has a significant impact on the combustion characteristics of gasoline engines. Thus, here we study the combustion characteristics of gasoline/natural gas dual-fuel combustion mode to determine the details of their respective advantages under cooperative combustion. A direct-injection turbocharged gasoline engine was modified, and an engine experimental platform was built for the coordinated control of gasoline direct-injection and natural gas port injection. A low-speed and low-load operating point was selected, and the in-cylinder pressure, heat release rate, pressure rise rate, combustion temperature, ignition delay, and combustion duration under the coordinated combustion of gasoline and natural gas dual fuel at the ignition moment were studied through bench tests among other typical combustion parameters. The results show that with the increase of the ignition advance angle, the maximum cylinder pressure, heat release rate, pressure rise rate, and maximum combustion temperature increase. The ignition advance angle is 28°CA-BTDC, and PES40 has the best fuel synergy effect and the best power performance improvement. The effect of the advance of the ignition advance angle on the ignition delay and the combustion duration reaches the peak at 20°CA-BTDC–22°CA-BTDC, and the improvement of the two periods is more significant at PES60.


Sign in / Sign up

Export Citation Format

Share Document