Transient heat transfer simulation, analysis and thermal performance study of double U-tube borehole heat exchanger based on numerical heat transfer model

2020 ◽  
Vol 173 ◽  
pp. 115189 ◽  
Author(s):  
Esa Dube Kerme ◽  
Alan S. Fung
2020 ◽  
Vol 12 (18) ◽  
pp. 7345
Author(s):  
Linlin Zhang ◽  
Zhonghua Shi ◽  
Tianhao Yuan

In this paper, a dynamic heat transfer model for the vertical double U-tube borehole heat exchanger (BHE) was developed to comprehensively address the coupled heat transfer between the in-tube fluid and the soil with groundwater advection. A new concept of the heat transfer effectiveness was also proposed to evaluate the BHE heat exchange performance together with the index of the heat transfer rate. The moving finite line heat source model was selected for heat transfer outside the borehole and the steady-state model for inside the borehole. The data obtained in an on-site thermal response test were used to validate the physical model of the BHE. Then, the effects of soil type, groundwater advection velocity, inlet water flow rate, and temperature on the outlet water temperature of BHE were explored. Results show that ignoring the effects of groundwater advection in sand gravel may lead to deviation in the heat transfer rate of up to 38.9% of the ground loop design. The groundwater advection fosters the heat transfer of BHE. An increase in advection velocity may also help to shorten the time which takes the surrounding soil to reach a stable temperature. The mass flow rate of the inlet water to the BHE should be more than 0.5 kg·s−1 but should not exceed a certain upper limit under the practical engineering applications with common scale BHE. The efficiency of the heat transfer of the double U-tube BHE was determined jointly by factors such as the soil’s physical properties and the groundwater advection velocity.


2015 ◽  
Author(s):  
Guillermo Soriano ◽  
Diego Siguenza

An analysis of thermal performance of a vertical Borehole Heat Exchanger (BHE) from a close loop Ground Source Heat Pump (GSHP) located in Guayaquil-Ecuador is presented. The project aims to assess the influence of using novels heat transfer fluids such as nanofluids, slurries with microencapsulated phase change materials and a mixture of both. The BHEs sensitive evaluation is performed by a mathematical model in a finite element analysis by using computational tools; where, the piping array is studied in one dimension scenario meanwhile its surroundings grout and ground volumes are presented as a three dimensional scheme. Therefore, an optimized model design can be achieved which would allow to study the feasibility of GSHP in buildings and industries in Guayaquil-Ecuador.


2013 ◽  
Vol 65 ◽  
pp. 231-241 ◽  
Author(s):  
Pingfang Hu ◽  
Zhongyi Yu ◽  
Na Zhu ◽  
Fei Lei ◽  
Xudong Yuan

Geothermics ◽  
2014 ◽  
Vol 51 ◽  
pp. 470-482 ◽  
Author(s):  
Richard A. Beier ◽  
José Acuña ◽  
Palne Mogensen ◽  
Björn Palm

Sign in / Sign up

Export Citation Format

Share Document