Thermal Performance of a Borehole Heat Exchanger Located in Guayaquil-Ecuador Using Novel Heat Transfer Fluids

2015 ◽  
Author(s):  
Guillermo Soriano ◽  
Diego Siguenza

An analysis of thermal performance of a vertical Borehole Heat Exchanger (BHE) from a close loop Ground Source Heat Pump (GSHP) located in Guayaquil-Ecuador is presented. The project aims to assess the influence of using novels heat transfer fluids such as nanofluids, slurries with microencapsulated phase change materials and a mixture of both. The BHEs sensitive evaluation is performed by a mathematical model in a finite element analysis by using computational tools; where, the piping array is studied in one dimension scenario meanwhile its surroundings grout and ground volumes are presented as a three dimensional scheme. Therefore, an optimized model design can be achieved which would allow to study the feasibility of GSHP in buildings and industries in Guayaquil-Ecuador.

2013 ◽  
Vol 700 ◽  
pp. 231-234
Author(s):  
Lian Yang ◽  
Yong Hong Huang ◽  
Liu Zhang

There are many ground source heat pumps in engineering construction application. However, Research on heat exchanger models of single-hole buried vertical ground source heat pump mostly focuses on single U-tube ground heat exchangers other than double U-tube ones in China currently. Compared with single U-tubes, double U-tubes have the heat transfer particularity of asymmetry. Therefore, the use of the traditional single tube models would have large error in the simulation of the actual double U-tube heat exchangers. This paper frames a three-dimensional heat transfer model for the vertical single-hole buried double u-tube heat exchanger in a ground source heat pump system. The model considers the performance of U-bube material and uses a dual coordinate system and makes the control elemental volumes superimposed.


2015 ◽  
Vol 787 ◽  
pp. 72-76 ◽  
Author(s):  
V. Naveen Prabhu ◽  
M. Suresh

Nanofluids are fluids containing nanometer-sized particles of metals, oxides, carbides, nitrides, or nanotubes. They exhibit enhanced thermal performance when used in a heat exchanger as heat transfer fluids. Alumina (Al2O3) is the most commonly used nanoparticle due to its enhanced thermal conductivity. The work presented here, deals with numerical simulations performed in a tube-in-tube heat exchanger to study and compare flow characteristics and thermal performance of a tube-in-tube heat exchanger using water and Al2O3/water nanofluid. A local element-by-element analysis utilizing e-NTU method is employed for simulating the heat exchanger. Profiles of hot and cooling fluid temperatures, pressure drop, heat transfer rate along the length of the heat exchanger are studied. Results show that heat exchanger with nanofluid gives improved heat transfer rate when compared with water. However, the pressure drop is more, which puts a limit on the operating conditions.


2014 ◽  
Vol 508 ◽  
pp. 141-145
Author(s):  
Xian Fang Hu ◽  
Yu Yun Li ◽  
Yan Hua Chen ◽  
Zhong Yi Yu

Through the three-dimensional heat transfer simulation of different periodic running of 3×3 tube group during one running period, the article draw the influence of vertical buried tube heat exchanger heat transfer performance under the different start-stop times, when total time is certain, shortening the continuous time of intermittent operation (increasing the start and stop times) helps promote the unit energy efficiency as the outlet water temperature change of the heat exchanger is toward to the favorable direction, and the trend of the change showed first increased and then decreased with the increase of start-stop times. Increasing the number of start and stop times do more contribution to promote the energy efficiency of the heat pump unit under the Working condition of refrigeration.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5471
Author(s):  
Peng Li ◽  
Peng Guan ◽  
Jun Zheng ◽  
Bin Dou ◽  
Hong Tian ◽  
...  

Ground thermal properties are the design basis of ground source heat pumps (GSHP). However, effective ground thermal properties cannot be obtained through the traditional thermal response test (TRT) method when it is used in the coaxial borehole heat exchanger (CBHE). In this paper, an improved TRT (ITRT) method for CBHE is proposed, and the field ITRT, based on the actual project, is carried out. The high accuracy of the new method is verified by laboratory experiments. Based on the results of the ITRT and laboratory experiment, the 3D numerical model for CBHE is established, in which the flow directions, sensitivity analysis of heat transfer characteristics, and optimization of circulation flow rate are studied, respectively. The results show that CBHE should adopt the anulus-in direction under the cooling condition, and the center-in direction under the heating condition. The influence of inlet temperature and flow rate on heat transfer rate is more significant than that of the backfill grout material, thermal conductivity of the inner pipe, and borehole depth. The circulating flow rate of CBHE between 0.3 m/s and 0.4 m/s can lead to better performance for the system.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5156 ◽  
Author(s):  
Hossein Javadi ◽  
Javier F. Urchueguia ◽  
Seyed Soheil Mousavi Ajarostaghi ◽  
Borja Badenes

To investigate the impacts of using nano-enhanced phase change materials on the thermal performance of a borehole heat exchanger in the summer season, a three-dimensional numerical model of a borehole heat exchanger is created in the present work. Seven nanoparticles including Cu, CuO, Al2O3, TiO2, SiO2, multi-wall carbon nanotube, and graphene are added to the Paraffin. Considering the highest melting rate and lowest outlet temperature, the selected nano-enhanced phase change material is evaluated in terms of volume fraction (0.05, 0.10, 0.15, 0.20) and then the shape (sphere, brick, cylinder, platelet, blade) of its nanoparticles. Based on the results, the Paraffin containing Cu and SiO2 nanoparticles are found to be the best and worst ones in thermal performance improvement, respectively. Moreover, it is indicated that the increase in the volume fraction of Cu nanoparticles could enhance markedly the melting rate, being 0.20 the most favorable value which increased up to 55% the thermal conductivity of the nano-enhanced phase change material compared to the pure phase change material. Furthermore, the blade shape is by far the most appropriate shape of the Cu nanoparticles by considering about 85% melting of the nano-enhanced phase change material.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 327-330
Author(s):  
Li Yang ◽  
Bo Zhang ◽  
Jiří Jaromír Klemeš ◽  
Jie Liu ◽  
Meiyu Song ◽  
...  

Abstract Many researchers numerically investigated U-tube underground heat exchanger using a two-dimensional simplified pipe. However, a simplified model results in large errors compared to the data from construction sites. This research is carried out using a three-dimensional full-size model. A model validation is conducted by comparing with experimental data in summer. This article investigates the effects of fluid velocity and buried depth on the heat exchange rate in a vertical U-tube underground heat exchanger based on fluid–structure coupled simulations. Compared with the results at a flow rate of 0.4 m/s, the results of this research show that the heat transfer per buried depth at 1.0 m/s increases by 123.34%. With the increase of the buried depth from 80 to 140 m, the heat transfer per unit depth decreases by 9.72%.


Sign in / Sign up

Export Citation Format

Share Document