Effect of Leading Edge Diameter Ratio and Mainstream Reynolds Number on Film Cooling Performance of Rotating Blade Leading Edge

Author(s):  
Gang Xie ◽  
Zhi Tao ◽  
Zhi-yu Zhou ◽  
Ru-quan You ◽  
Hai-wang Li
Author(s):  
Ross Johnson ◽  
Jonathan Maikell ◽  
David Bogard ◽  
Justin Piggush ◽  
Atul Kohli ◽  
...  

When a turbine blade passes through wakes from upstream vanes it is subjected to an oscillation of the direction of the approach flow resulting in the oscillation of the position of the stagnation line on the leading edge of the blade. In this study an experimental facility was developed that induced a similar oscillation of the stagnation line position on a simulated turbine blade leading edge. The overall effectiveness was evaluated at various blowing ratios and stagnation line oscillation frequencies. The location of the stagnation line on the leading edge was oscillated to simulate a change in angle of attack between α = ± 5° at a range of frequencies from 2 to 20 Hz. These frequencies were chosen based on matching a range of Strouhal numbers typically seen in an engine due to oscillations caused by passing wakes. The blowing ratio was varied between M = 1, M = 2, and M = 3. These experiments were carried out at a density ratio of DR = 1.5 and mainstream turbulence levels of Tu ≈ 6%. The leading edge model was made of high conductivity epoxy in order to match the Biot number of an actual engine airfoil. Results of these tests showed that the film cooling performance with an oscillating stagnation line was degraded by as much as 25% compared to the performance of a steady flow with the stagnation line aligned with the row of holes at the leading edge.


Author(s):  
Wei He ◽  
Qinghua Deng ◽  
Juan He ◽  
Tieyu Gao ◽  
Zhenping Feng

Abstract A novel internal cooling structure has been raised recently to enhance internal cooling effectiveness and reduce coolant requirement without using film cooling. This study mainly focuses on verifying the actual cooling performance of the structure and investigating the heat transfer mechanism of the leading edge part of the structure, named bended channel cooling. The cooling performances of the first stage of GE-E3 turbine with three different blade leading edge cooling structures (impingement cooling, swirl cooling and bended channel cooling) were simulated using the conjugate heat transfer method. Furthermore, the effects of jetting orifice geometry and channel Reynolds number were studied with simplified models to illustrate the flow and heat transfer characteristics of the bended channel cooling. The results show that the novel internal cooling structure has obvious advantages on the blade leading edge and suction side under operating condition. The vortex core structure in the bended channel depends on orifice width, but not channel Reynolds number. With the ratio of orifice width to outer wall thickness smaller than a critical value of 0.5, the coolant flows along the external surface of the channel in the pattern of “inner film cooling”, which is pushed by centrifugal force and minimizes the mixing with spent cooling air. Namely, the greatly organized coolant flow generates higher cooling effectiveness and lower coolant demand. Both the Nusselt number on the channel surfaces and total pressure loss increase significantly when the orifice width falls or channel Reynolds increases, but the wall jet impingement distance appears to be less influential.


Author(s):  
Brian D. Mouzon ◽  
Elon J. Terrell ◽  
Jason E. Albert ◽  
David G. Bogard

The external cooling performance of a film cooled turbine airfoil can be quantified as a net reduction in heat transfer relative to the turbine airfoil without film cooling. This quantification is generally accomplished by using measurements of the adiabatic effectiveness and the change in heat transfer coefficients (hf/h0) for the film cooled surface to determine the net heat flux reduction (Δqr). Although measurement of Δqr for laboratory models give an indication of the ultimate film cooling performance, this does not show how much the surface temperature of the airfoil is reduced by film cooling. Measurement of scaled surface temperatures can be accomplished by using laboratory models constructed so that the Biot number is matched with that of the actual airfoil. These measurements provide a scaled temperature distribution on the airfoil that is referred to as the overall effectiveness, φ. For the current study, measurements of Δqr and φ have been made for a simulated turbine blade leading edge. The simulated leading edge incorporated shaped coolant holes, and had three rows of coolant holes. Improvements due to the shaped holes were determined by comparisons with previously measured round hole configurations. Spatially distributed hf/h0 show increases of 5% to 15% for M = 1.0 and 10% to 30% for M = 2.0. Results show that local variation in Δqr much greater than variation in φ, but laterally averaged Δqr distributions are reasonable predictors of the laterally averaged φ distributions.


2021 ◽  
Vol 169 ◽  
pp. 107034
Author(s):  
Gang Xie ◽  
Zhi Tao ◽  
Zhi-yu Zhou ◽  
Ru-quan You ◽  
Shuang-zhi Xia ◽  
...  

Author(s):  
James L. Rutledge ◽  
Marc D. Polanka

While it is well understood that certain nondimensional parameters, such as freestream Reynolds number and turbulence intensity, must be matched for proper design of film cooling experiments, uncertainty continues on the ideal method to scale film cooling flow rate. This debate typically surrounds the influence of the coolant to freestream density ratio and whether mass flux ratio or momentum flux ratio properly accounts for the density effects. Unfortunately, density is not the only fluid property to differ between typical wind tunnel experiments and actual turbine conditions. Temperature differences account for the majority of the property differences; however, attempts to match density ratio through the use of alternative gases can exacerbate these property differences. A computational study was conducted to determine the influence of other fluid properties besides density — namely specific heat, thermal conductivity, and dynamic viscosity. CFD simulations were performed by altering traditional film cooling nondimensional parameters as well as others such as the Reynolds number ratio, Prandtl number ratio, and heat capacity ratio to evaluate their effects on adiabatic effectiveness and heat transfer coefficient. A cylindrical leading edge with a flat afterbody was used to simulate a turbine blade leading edge region. A single coolant hole was located 21.5° from the leading edge, angled 20° to the surface and 90° from the streamwise direction. Results indicated that thermal properties can play a significant role in understanding and matching results in cooling performance. Density effects certainly dominate; however, variations in conductivity and heat capacity can result in 10% or higher changes in the resulting heat flux to the surface when scaling ambient rig configurations to engine representative conditions.


Author(s):  
Mingjie Zhang ◽  
Nian Wang ◽  
Andrew F. Chen ◽  
Je-Chin Han

This paper presents the turbine blade leading edge model film cooling effectiveness with shaped holes, using the pressure sensitive paint (PSP) mass transfer analogy method. The effects of leading edge profile, coolant to mainstream density ratio and blowing ratio are studied. Computational simulations are performed using the realizable k-ε turbulence model. Effectiveness obtained by CFD simulations are compared with experiments. Three leading edge profiles, including one semi-cylinder and two semi-elliptical cylinders with an after body, are investigated. The ratios of major to minor axis of two semi-elliptical cylinders are 1.5 and 2.0, respectively. The leading edge has three rows of shaped holes. For the semi-cylinder model, shaped holes are located at 0 degrees (stagnation line) and ± 30 degrees. Row spacing between cooling holes and the distance between impingement plate and stagnation line are the same for three leading edge models. The coolant to mainstream density ratio varies from 1.0 to 1.5 and 2.0, and the blowing ratio varies from 0.5 to 1.0 and 1.5. Mainstream Reynolds number is about 100,900 based on the diameter of the leading edge cylinder, and the mainstream turbulence intensity is about 7%. The results provide an understanding of the effects of leading edge profile and on turbine blade leading edge region film cooling with shaped-hole designs.


Author(s):  
K. Jung ◽  
D. K. Hennecke

The effect of leading edge film cooling on heat transfer was experimentally investigated using the naphthalene sublimation technique. The experiments were performed on a symmetrical model of the leading edge suction side region of a high pressure turbine blade with one row of film cooling holes on each side. Two different lateral inclinations of the injection holes were studied: 0° and 45°. In order to build a data base for the validation and improvement of numerical computations, highly resolved distributions of the heat/mass transfer coefficients were measured. Reynolds numbers (based on hole diameter) were varied from 4000 to 8000 and blowing rate from 0.0 to 1.5. For better interpretation, the results were compared with injection-flow visualizations. Increasing the blowing rate causes more interaction between the jets and the mainstream, which creates higher jet turbulence at the exit of the holes resulting in a higher relative heat transfer. This increase remains constant over quite a long distance dependent on the Reynolds number. Increasing the Reynolds number keeps the jets closer to the wall resulting in higher relative heat transfer. The highly resolved heat/mass transfer distribution shows the influence of the complex flow field in the near hole region on the heat transfer values along the surface.


Sign in / Sign up

Export Citation Format

Share Document