Performance analysis of a solar-aided waste-to-energy system based on steam reheating

2021 ◽  
Vol 185 ◽  
pp. 116445
Author(s):  
Heng Chen ◽  
Yunyun Wu ◽  
Yuchuan Zeng ◽  
Gang Xu ◽  
Wenyi Liu
Author(s):  
W. H. Jonathan Mak ◽  
Michel-Alexandre Cardin ◽  
Liu Ziqi ◽  
P. John Clarkson

The concept of resilience has emerged from various domains to address how systems, people and organizations can handle uncertainty. This paper presents a method to improve the resilience of an engineering system by maximizing the system economic lifecycle value, as measured by Net Present Value, under uncertainty. The method is applied to a Waste-to-Energy system based in Singapore and the impact of combining robust and flexible design strategies to improve resilience are discussed. Robust strategies involve optimizing the initial capacity of the system while Bayesian Networks are implemented to choose the flexible expansion strategy that should be deployed given the current observations of demand uncertainties. The Bayesian Network shows promise and should be considered further where decisions are more complex. Resilience is further assessed by varying the volatility of the stochastic demand in the simulation. Increasing volatility generally made the system perform worse since not all demand could be converted to revenue due to capacity constraints. Flexibility shows increased value compared to a fixed design. However, when the system is allowed to upgrade too often, the costs of implementation negates the revenue increase. The better design is to have a high initial capacity, such that there is less restriction on the demand with two or three expansions.


2020 ◽  
Vol 8 (6) ◽  
pp. 5402-5411

The idea of DC-DC converter with multi-input is yet to attain a vital role in the field of 'hybrid energy system (HES)' integration and electric vehicle applications. So, the analysis of the dynamic behavior of the multi input converters is crucial in designing a proper controller to achieve a stable performance. This paper reports a 'small signal model (SSM)' and the performance analysis of a 'dual-input DC-DC converter (DIC)'. The parasitic resistances of capacitor and inductor are considered in the modelling. The significant transfer function (TF)s are derived with the help of the SSM, and the Bode plots for the TFs have been obtained. The performance analysis shows that the derived TFs allow better closed loop performance of the system. The simulation of the DIC converter in MATLAB/ Simulink® has been carried out and the simulation waveforms are presented. A hardware setup of the DIC converter is fabricated and experimented in the laboratory. The dynamic performance of the DIC is analyzed under the variations in the source and load conditions. The presented converter with a closed loop controller can be used in the applications to formulate a HES with solar-PV, battery, fuel cell, etc. Also the performance comparison of the DIC converter has been performed with other reported converters which shows that the DIC converter has higher efficiency and several other potential merits.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4345
Author(s):  
Peiyuan Pan ◽  
Meiyan Zhang ◽  
Gang Xu ◽  
Heng Chen ◽  
Xiaona Song ◽  
...  

A novel design has been developed to improve the waste-to-energy process through the integration with a biomass-fired power plant. In the proposed scheme, the superheated steam generated by the waste-to-energy boiler is fed into the low-pressure turbine of the biomass power section for power production. Besides, the feedwater from the biomass power section is utilized to warm the combustion air of the waste-to-energy boiler, and the feedwater of the waste-to-energy boiler is offered by the biomass power section. Based on a 35-MW biomass-fired power plant and a 500-t/d waste-to-energy plant, the integrated design was thermodynamically and economically assessed. The results indicate that the net power generated from waste can be enhanced by 0.66 MW due to the proposed solution, and the waste-to-electricity efficiency increases from 20.49% to 22.12%. Moreover, the net present value of the waste-to-energy section is raised by 5.02 million USD, and the dynamic payback period is cut down by 2.81 years. Energy and exergy analyses were conducted to reveal the inherent mechanism of performance enhancement. Besides, a sensitivity investigation was undertaken to examine the performance of the new design under various conditions. The insights gained from this study may be of assistance to the advancement of waste-to-energy technology.


Sign in / Sign up

Export Citation Format

Share Document