Performance analysis and operation strategy of an improved waste-to-energy system incorporated with a coal-fired power unit based on feedwater heating

2020 ◽  
Vol 178 ◽  
pp. 115637
Author(s):  
Heng Chen ◽  
Meiyan Zhang ◽  
Zhidong Chen ◽  
Gang Xu ◽  
Wei Han ◽  
...  
2021 ◽  
Vol 185 ◽  
pp. 116445
Author(s):  
Heng Chen ◽  
Yunyun Wu ◽  
Yuchuan Zeng ◽  
Gang Xu ◽  
Wenyi Liu

2022 ◽  
Vol 12 (2) ◽  
pp. 866
Author(s):  
Yuanyuan Zhang ◽  
Lai Wei ◽  
Xin Gao ◽  
Heng Chen ◽  
Qiubai Li ◽  
...  

An innovative hybrid energy system consisting of a waste-to-energy unit and a coal-fired power unit is designed to enhance the energy recovery of waste and decrease the investment costs of waste-to-energy unit. In this integrated design, partial cold reheat steam of the coal-fired unit is heated by the waste-to-energy boiler’s superheater. The heat required for partial preheated air of waste-to-energy unit and its feedwater are supplied by the feedwater of CFPU. In addition, an additional evaporator is deployed in the waste-to-energy boiler, of which the outlet stream is utilized to provide the heat source for the urea hydrolysis unit of coal-fired power plant. The stand-alone and proposed designs are analyzed and compared through thermodynamic and economic methods. Results indicate that the net total energy efficiency increases from 41.84% to 42.12%, and the net total exergy efficiency rises from 41.19% to 41.46% after system integration. Moreover, the energy efficiency and exergy efficiency of waste-to-energy system are enhanced by 10.48% and 9.92%, respectively. The dynamic payback period of new waste-to-energy system is cut down from 11.39 years to 5.48 years, and an additional net present value of $14.42 million is got than before.


2021 ◽  
Vol 289 ◽  
pp. 116698
Author(s):  
Peng Li ◽  
Zixuan Wang ◽  
Jiahao Wang ◽  
Tianyu Guo ◽  
Yunxing Yin

Author(s):  
W. H. Jonathan Mak ◽  
Michel-Alexandre Cardin ◽  
Liu Ziqi ◽  
P. John Clarkson

The concept of resilience has emerged from various domains to address how systems, people and organizations can handle uncertainty. This paper presents a method to improve the resilience of an engineering system by maximizing the system economic lifecycle value, as measured by Net Present Value, under uncertainty. The method is applied to a Waste-to-Energy system based in Singapore and the impact of combining robust and flexible design strategies to improve resilience are discussed. Robust strategies involve optimizing the initial capacity of the system while Bayesian Networks are implemented to choose the flexible expansion strategy that should be deployed given the current observations of demand uncertainties. The Bayesian Network shows promise and should be considered further where decisions are more complex. Resilience is further assessed by varying the volatility of the stochastic demand in the simulation. Increasing volatility generally made the system perform worse since not all demand could be converted to revenue due to capacity constraints. Flexibility shows increased value compared to a fixed design. However, when the system is allowed to upgrade too often, the costs of implementation negates the revenue increase. The better design is to have a high initial capacity, such that there is less restriction on the demand with two or three expansions.


2020 ◽  
Vol 8 (6) ◽  
pp. 5402-5411

The idea of DC-DC converter with multi-input is yet to attain a vital role in the field of 'hybrid energy system (HES)' integration and electric vehicle applications. So, the analysis of the dynamic behavior of the multi input converters is crucial in designing a proper controller to achieve a stable performance. This paper reports a 'small signal model (SSM)' and the performance analysis of a 'dual-input DC-DC converter (DIC)'. The parasitic resistances of capacitor and inductor are considered in the modelling. The significant transfer function (TF)s are derived with the help of the SSM, and the Bode plots for the TFs have been obtained. The performance analysis shows that the derived TFs allow better closed loop performance of the system. The simulation of the DIC converter in MATLAB/ Simulink® has been carried out and the simulation waveforms are presented. A hardware setup of the DIC converter is fabricated and experimented in the laboratory. The dynamic performance of the DIC is analyzed under the variations in the source and load conditions. The presented converter with a closed loop controller can be used in the applications to formulate a HES with solar-PV, battery, fuel cell, etc. Also the performance comparison of the DIC converter has been performed with other reported converters which shows that the DIC converter has higher efficiency and several other potential merits.


Sign in / Sign up

Export Citation Format

Share Document