Thermodynamic feasibility evaluation of an innovative salinity gradient solar ponds-based ORC using a zeotropic mixture as working fluid and LNG cold energy

2021 ◽  
Vol 186 ◽  
pp. 116488
Author(s):  
A.H. Mosaffa ◽  
L. Garousi Farshi
2015 ◽  
Vol 1113 ◽  
pp. 800-805 ◽  
Author(s):  
Baljit Singh ◽  
Muhammad Fairuz Remeli ◽  
Alex Pedemont ◽  
Amandeep Oberoi ◽  
Abhijit Date ◽  
...  

This paper investigates the capability of running a system which uses hot fluid from solar evacuated tube collectors to boost the temperature and overall heat storage of the solar pond. The system is circulated by a solar powered pump, producing heat energy entirely from the incoming solar radiation from the sun. Solar evacuated tube collectors use a renewable source of power directly from the sun to heat the working fluid to very high temperatures. Solar ponds are emerging on the renewable energy scene with the capacity to provide a simple and inexpensive thermal storage for the production of heat on a large scale. The results of the performance of the system show a significant heat energy increase into the solar ponds lower convective region, increasing the overall performance of the solar pond.


Author(s):  
Huijuan Chen ◽  
D. Yogi Goswami ◽  
Muhammad M. Rahman ◽  
Elias K. Stefanakos

A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power is proposed and analyzed in this paper. A supercritical Rankine cycle does not go through two-phase region during the heating process. By adopting zeotropic mixtures as the working fluids, the condensation process happens non-isothermally. Both of the features create a potential in reducing the irreversibility and improving the system efficiency. A comparative study between an organic Rankine cycle and the proposed supercritical Rankine cycle shows that the proposed cycle improves the cycle thermal efficiency, exergy efficiency of the heating and the condensation processes, and the system overall efficiency.


Solar Energy ◽  
2011 ◽  
Vol 85 (11) ◽  
pp. 2987-2996 ◽  
Author(s):  
Naheed Malik ◽  
Abhijit Date ◽  
Jimmy Leblanc ◽  
Aliakbar Akbarzadeh ◽  
Barry Meehan

Solar Energy ◽  
2011 ◽  
Vol 85 (12) ◽  
pp. 3103-3142 ◽  
Author(s):  
Jimmy Leblanc ◽  
Aliakbar Akbarzadeh ◽  
John Andrews ◽  
Huanmin Lu ◽  
Peter Golding

2017 ◽  
Vol 21 (2) ◽  
pp. 1153-1160 ◽  
Author(s):  
Aleksandra Borsukiewicz

The paper presents the idea of using organic substances as working fluids in vapor power plants, in order to convert the low and medium temperature thermal energy sources into electrical energy. The calculation results of the power plant efficiency for butane-ethane zeotropic mixtures of different mass compositions, for the power plant supplied with hot water having a temperature of 120?C. Based on the results of thermal-flow calculations it was found that the use of zeotropic mixture does not allow to increase the efficiency and output of the power plant (these values appeared as slightly lower ones). However, it was found that, through the selection of a mixture of sufficiently large temperature glide, the heat exchange surface of the condenser can be reduced or a co-generation system can be implemented.


Desalination ◽  
2001 ◽  
Vol 136 (1-3) ◽  
pp. 13-23 ◽  
Author(s):  
Huanmin Lu ◽  
John C. Walton ◽  
Andrew H.P. Swift

Author(s):  
Zhixin Sun ◽  
Shujia Wang ◽  
Fuquan Xu ◽  
Tielong Wang

Natural gas is considered as a green fuel due to its low environmental impact. LNG contains a large amount of cold exergy and must be regasified before further utilization. ORC (Organic Rankine Cycle) has been proven to be a promising solution for both low grade heat utilization and LNG cold exergy recovery. Due to the great temperature difference between the heat source and LNG, the efficiency of one-stage ORC is relatively small. Hence, some researchers move forward to a two-stage Rankine cycle. Working fluid plays a quite important role in the cycle performance. Working fluid selection of a two-stage ORC is much more challenging than that of a single-stage ORC. In this paper, a two-stage ORC is studied. Heat source temperatures of 100,150 and 200°C are investigated. 20 substances are selected as potential candidates for both the high and low Rankine cycles. The evaporating, condensing and turbine inlet temperatures of both Rankine cycles are optimized by PSO (Particle Swarm Optimization). The results show that the best combination for heat source temperature of 100°C is R161/R218 with the maximum exergy efficiency of 35.27%. The best combination for 150°C is R161/RC318 with the maximum efficiency of 37.84% and ammonia/ammonia with the maximum efficiency of 39.15% for 200°C. Fluids with intermediate critical temperature, lower triple point temperature and lower normal boiling temperature are good candidates.


Sign in / Sign up

Export Citation Format

Share Document