Influence of inclination angle on heat transfer performance of heat pipe radiator with an array of pulsating condensers

2021 ◽  
Vol 191 ◽  
pp. 116847
Author(s):  
Guowei Xiahou ◽  
Shun Zhang ◽  
Rui Ma ◽  
Junjie Zhang ◽  
Yecong He
2010 ◽  
Vol 132 (12) ◽  
Author(s):  
Haizhen Xian ◽  
Yongping Yang ◽  
Dengying Liu ◽  
Xiaoze Du

In this paper, experiments were conducted to achieve a better understanding of the oscillating heat pipe (OHP) operating behavior with water and ethanol as working fluid. The experimental results showed that there existed a necessary temperature difference between the evaporator and the condenser section to keep the heat pipe working. The maximum effective conductivity of the water OHP reached up to 259 kW/m K, while that of the ethanol OHP is of 111 kW/m K. Not all the OHPs are operated in the horizontal operation mode. The heat transfer performance of the ethanol OHP was obviously affected by the filling ratio and the inclination angle but the influence law is irregular. The effect of the filling ratio and the inclination angle of the water OHP were smaller than that of the ethanol one. The heat transfer performance of the OHP was improved with increase of operating temperature. The startup characteristics of the OHP depended on the establishment of the integral oscillating process, which was determined by the operating factors. The startup temperature of the ethanol OHP varied from 40°C to 50°C and that of the water, OHP varied from 40°C to 60°C without considering the horizontal operating mode. The water OHP showed a better performance and more stable heat transfer characteristics than the ethanol OHP, which had no obvious advantages of the startup capability as well.


Author(s):  
Mengke Wu ◽  
Yulong Ji ◽  
Yanmin Feng ◽  
Xin Yang ◽  
Yadong Li ◽  
...  

Abstract The liquid metal high-temperature oscillating heat pipe (LMHOHP) is a kind of high efficiency heat transfer device, which can function in high-temperature environments above 500°C. In this paper, the effects of inclination angle on the startup and heat transfer performance of a LMHOHP were investigated experimentally. The sodium-potassium alloy (potassium 78%) was used as the working fluid of the LMHOHP and the filling ratio was 50%. The start-up characteristics and heat transfer performance of the LMHOHP at four inclination angles of 0°, 30°, 60° and 90° were tested when the operating temperatures were 150°C and 400°C, respectively. Experimental results show that (1) The LMHOHP can start-up and function at all the tested inclination angles, the maximum temperatures of the evaporator and condenser can exceed 1000°C and 700°C, respectively. (2) The thermal resistance of the LMHOHP decreases with inclination angle increases, the thermal resistance at the inclination angle of 90° decreases by up to 32.9%, 41.6% and 55.9% compared with that at the inclination angle of 60°, 30° and 0°, respectively. (3) When the input power exceeds 3000W, the flow patterns of LMHOHP at the inclination angle of 90°, 60° and 30° can be changed from the oscillating motion to the unidirectional circulating flow. (4) Compared with the operating temperature of 150°C, the heat transfer performance of the LMHOHP improves at the operating temperature of 400°C, at the input power of 3457W and the inclination angle of 90°, the minimum thermal resistance of LMHOHP is 0.075°C/W. The results shown that the LMHOHP has a good adaptability to working conditions which further extends the application range of oscillating heat pipe.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 751-760
Author(s):  
Lei Lei

AbstractTraditional testing algorithm based on pattern matching is impossible to effectively analyze the heat transfer performance of heat pipes filled with different concentrations of nanofluids, so the testing algorithm for heat transfer performance of a nanofluidic heat pipe based on neural network is proposed. Nanofluids are obtained by weighing, preparing, stirring, standing and shaking using dichotomy. Based on this, the heat transfer performance analysis model of the nanofluidic heat pipe based on artificial neural network is constructed, which is applied to the analysis of heat transfer performance of nanofluidic heat pipes to achieve accurate analysis. The experimental results show that the proposed algorithm can effectively analyze the heat transfer performance of heat pipes under different concentrations of nanofluids, and the heat transfer performance of heat pipes is best when the volume fraction of nanofluids is 0.15%.


2012 ◽  
Vol 197 ◽  
pp. 216-220
Author(s):  
Zhong Chao Zhao ◽  
Rui Ye ◽  
Gen Ming Zhou

To solve the cooling problem in modern electronic device, a kind of heat pipe radiator was designed and manufactured in this paper. The heat transfer performance of heat pipe radiator and its relationship with air velocity were investigated by experimental method. The experimental results show that the heat pipe radiator can meet the temperature requirement of electronic device with the power range from 40W to 160W. To keep the operational temperature of electronic device with power of 160W under 75°C,the air velocity should be keep at 1.7m/s. The heat dissipation performance of heat pipe radiator was enhanced with the air velocity increased from 0.2m/s to 1.7m/s.for the electronic equipment with power of 160W.


2014 ◽  
Vol 595 ◽  
pp. 24-29 ◽  
Author(s):  
Shen Chun Wu ◽  
Kuei Chi Lo ◽  
Jia Ruei Chen ◽  
Chen Yu Chung ◽  
Weie Jhih Lin ◽  
...  

This paper specifically addresses the effect of the sintering temperature curve in manufacturing nickel powder capillary structure (wick) for a loop heat pipe (LHP) with flat evaporator. The sintering temperature curve is composed of three regions: a region of increasing temperature, a region of constant temperature, and a region of decreasing temperature. The most important region is the increasing temperature region, as the rate of temperature increase directly affects the performance of the wick.When the slope of the region of increasing temperature is 0.8 (equivalent to 8 OC/min), the structure of the manufactured wick is complete, with the best heat transfer performance result. Experimental resultsshowed that the optimal heat transfer performance is 160W, the minimal total thermal resistance is approximately 0.43OC/W, and the heat flux is 17W/cm2; the optimal wick manufactured has an effective pore radius of 5.2 μm, a permeability of 5.9×10-13m2, and a porosity of 64%.


2019 ◽  
Vol 148 ◽  
pp. 878-885 ◽  
Author(s):  
Nampon Sangpab ◽  
Nobuhiro Kimura ◽  
Pradit Terdtoon ◽  
Phrut Sakulchangsatjatai ◽  
Niti Kammuang-lue ◽  
...  

Author(s):  
Shigeki Hirasawa ◽  
Tatsuya Nakamu ◽  
Tsuyoshi Kawanami ◽  
Katsuaki Shirai

The coupling of the electrocaloric effect in thin films with thermal switches has the potential to be used for efficient refrigeration. We studied the unsteady heat transfer performance and periodic thermal-switching behavior of a flat heat pipe to transfer cold energy from a changing heat source. The condenser of the flat heat pipe was the changing heat source and changed from −20 W to +20 W every 5 s. The temperature of the condenser surface changed in accordance with the heat generation of the heat source. The evaporator was a plate with a mesh wick attached to a water-flow pipe. Cold energy transferred from the condenser surface to the evaporator surface only when the temperature of the condenser surface was lower than that of the evaporator surface. We analyzed the unsteady temperature change and heat transfer performance of the flat heat pipe by numerical simulation. The analytical results showed that it was necessary to have two thermal switches to separate the heat energy and cold energy of the changing heat source. Also, it was important to reduce the thermal resistance and heat capacity of the evaporator surface to improve the unsteady heat transfer performance of the heat pipe. Next, we measured the unsteady heat transfer performance of the flat heat pipe experimentally. The experimental results showed that the thermal-switching behavior was observed when the heat generation of the heat source changed every 5 s.


Sign in / Sign up

Export Citation Format

Share Document