Effect of Sintering Temperature Curve in Wick Manufactured for Loop Heat Pipe with Flat Evaporator

2014 ◽  
Vol 595 ◽  
pp. 24-29 ◽  
Author(s):  
Shen Chun Wu ◽  
Kuei Chi Lo ◽  
Jia Ruei Chen ◽  
Chen Yu Chung ◽  
Weie Jhih Lin ◽  
...  

This paper specifically addresses the effect of the sintering temperature curve in manufacturing nickel powder capillary structure (wick) for a loop heat pipe (LHP) with flat evaporator. The sintering temperature curve is composed of three regions: a region of increasing temperature, a region of constant temperature, and a region of decreasing temperature. The most important region is the increasing temperature region, as the rate of temperature increase directly affects the performance of the wick.When the slope of the region of increasing temperature is 0.8 (equivalent to 8 OC/min), the structure of the manufactured wick is complete, with the best heat transfer performance result. Experimental resultsshowed that the optimal heat transfer performance is 160W, the minimal total thermal resistance is approximately 0.43OC/W, and the heat flux is 17W/cm2; the optimal wick manufactured has an effective pore radius of 5.2 μm, a permeability of 5.9×10-13m2, and a porosity of 64%.

2016 ◽  
Vol 723 ◽  
pp. 282-287 ◽  
Author(s):  
Shen Chun Wu ◽  
Shih Hsuan Yen ◽  
Wei Chen Lo ◽  
Chen Yu Chung ◽  
Shen Jwu Su

This study investigated the use of sintered Nickel powder as the wick material of Loop heat pipe with flat evaporator (Flat loop heat pipe, FLHP) and its effect on the heat transfer performance. Add the 1-heptanol into water and form Self-rewetting Fluid (SRF), resulting in the Marangoni effect. The colder liquid can be transport to the heating surface, delaying the occurrence of dry-out and increasing the critical heat load. This paper use Surface tension measurements to measure the change of 1-heptanol SRF, then it was apply to nickel wick FLHP as working fluid to investigate its effect on the heat transfer performance. This study successfully established production process of Nickel wick structure. Results of wick structure for the effective pore radius of 2.6 μm, porosity of 62%, permeability of 5.7 × 10-13m2. Results of Surface tension measurements show that 1-heptanol aqueous solution’s surface tension increases with increasing temperature, Results from applying 0.1% 1-heptanol aqueous solution to FLHP as working fluid. For performance testing show that the critical heat load was 240 W and the total thermal resistance was 0.77 ° C/W. Compared with FLHP with pure water, SRF raised the maximum heat flux of 70%, the total thermal resistance of the system reduces 40%, SRF has the potential to enhance the heat transfer performance of FLHP.


2012 ◽  
Vol 55 (4) ◽  
pp. 1304-1315 ◽  
Author(s):  
Xuan Hung Nguyen ◽  
Byung Ho Sung ◽  
Jeehoon Choi ◽  
Seong Ryoul Ryoo ◽  
Han Seo Ko ◽  
...  

2013 ◽  
Vol 711 ◽  
pp. 223-228 ◽  
Author(s):  
Shen Chun Wu ◽  
Jhih Huang Gao ◽  
Zih Yan Huang ◽  
Dawn Wang ◽  
Cho Jeng Huang ◽  
...  

This study investigates the effects of increasing the evaporating area of wick in a loop heat pipe (LHP). This work attempts to improve the performance of the loop heat pipe by increasing the number of grooves and thereby the surface area of the wick. The number of grooves is increased from eight to twelve. Experimental results show that increasing the number of grooves not only increases the surface area of the wick but also enhances LHP performance. When the evaporating surface area increases by 50%, which corresponds to increasing the number of grooves from eight to twelve, the heat transfer capacity increases from 310W to 470W and the thermal resistance is reduced from 0.21°C/W to 0.17°C/W. According to preliminary measurements, increasing the number of grooves in the loop heat pipe is highly promising for improving the heat transfer performance.


2018 ◽  
Vol 136 (1) ◽  
pp. 211-222 ◽  
Author(s):  
Emerald Ninolin Stephen ◽  
Lazarus Godson Asirvatham ◽  
Ramachandran Kandasamy ◽  
Brusly Solomon ◽  
Gnana Sundari Kondru

2013 ◽  
Vol 589-590 ◽  
pp. 552-558
Author(s):  
Xi Bing Li ◽  
Xun Wang ◽  
Yun Shi Ma ◽  
Zhong Liang Cao

As a highly efficient heat dissipation unit, a micro heat pipe is widely used in high heat flux microelectronic chips, and its thermal resistance is crucial to heat transfer capacity. Through analyses of the structure and heat transfer performance of a circular heat pipe with sintered wick, the theoretical model of total thermal resistance was established on heat transfer theory, and then simplified, finally a testing platform was set up to test for total thermal resistance performance. The testing results show that when the micro heat pipe is in optimal heat transfer state, its total thermal resistance conform well with that from the theoretical model, and its actual thermal resistance is much lower than that of the rod made of the material with perfect thermal conductivity and of the same geometric size. With the increment of heat transfer capability, the total thermal resistance of a micro heat pipe with sintered wick decreases first, then increases and reaches the minimum when it is in the optimal heat transfer state. The greater total thermal resistance in low heat transfer performance is mainly caused by too much working fluid accumulating in evaporator and the lower velocity in vapor cavity, and the greater total thermal resistance in high heat transfer performance is mainly due to the working fluid drying up in condenser. Total thermal resistance is related to many factors, such as thermal conductivity of tube-shell material, wall thickness, wick thickness, copper powders grain size and porosity, the lengths of condenser and evaporator, and the diameter of vapor cavity etc.. Therefore, the structure parameters of a micro heat pipe with sintered wick should be reasonably designed according to the specific conditions to ensure its heat transfer capacity and total thermal resistance to meet the requirements.


Sign in / Sign up

Export Citation Format

Share Document