A state-of-the-art review on the application of heat pipe system in data centers

2021 ◽  
Vol 199 ◽  
pp. 117618
Author(s):  
Li Ling ◽  
Quan Zhang ◽  
Yuebin Yu ◽  
Shuguang Liao
2015 ◽  
Vol 90 ◽  
pp. 937-944 ◽  
Author(s):  
Zhenying Wang ◽  
Xiaotong Zhang ◽  
Zhen Li ◽  
Ming Luo

2015 ◽  
Vol 105 ◽  
pp. 1178-1204 ◽  
Author(s):  
M.S. Naghavi ◽  
K.S. Ong ◽  
M. Mehrali ◽  
I.A. Badruddin ◽  
H.S.C. Metselaar

2008 ◽  
Author(s):  
Shiro Ueno ◽  
Dmitry Khrustalev ◽  
Peter Cologer ◽  
Russ Snyder

2016 ◽  
Vol 57 ◽  
pp. 421-464 ◽  
Author(s):  
Arnaud Malapert ◽  
Jean-Charles Régin ◽  
Mohamed Rezgui

We introduce an Embarrassingly Parallel Search (EPS) method for solving constraint problems in parallel, and we show that this method matches or even outperforms state-of-the-art algorithms on a number of problems using various computing infrastructures. EPS is a simple method in which a master decomposes the problem into many disjoint subproblems which are then solved independently by workers. Our approach has three advantages: it is an efficient method; it involves almost no communication or synchronization between workers; and its implementation is made easy because the master and the workers rely on an underlying constraint solver, but does not require to modify it. This paper describes the method, and its applications to various constraint problems (satisfaction, enumeration, optimization). We show that our method can be adapted to different underlying solvers (Gecode, Choco2, OR-tools) on different computing infrastructures (multi-core, data centers, cloud computing). The experiments cover unsatisfiable, enumeration and optimization problems, but do not cover first solution search because it makes the results hard to analyze. The same variability can be observed for optimization problems, but at a lesser extent because the optimality proof is required. EPS offers good average performance, and matches or outperforms other available parallel implementations of Gecode as well as some solvers portfolios. Moreover, we perform an in-depth analysis of the various factors that make this approach efficient as well as the anomalies that can occur. Last, we show that the decomposition is a key component for efficiency and load balancing.


Author(s):  
Mohammad Mamunur Rahman ◽  
Manabendra Saha ◽  
Muhammad Mostafa Kamal Bhuiya ◽  
Auvi Biswas ◽  
Md. Hasibul Alam ◽  
...  

2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Brian Reding ◽  
Yiding Cao

Heat pipe technology offers a possible cooling technique for structures exposed to high heat fluxes, as in turbomachinery such as compressors and turbines. However, in its current configuration as single heat pipes, implementation of the technology is limited due to the difficulties in manufacturability and costs. Hence, a study to develop a new radially rotating (RR) heat pipe system was undertaken, which integrates multiple RR heat pipes with a common reservoir and interconnected braches for a more effective and practical solution to turbomachinery cooling. Experimental study has shown that the integration of multiple heat pipe branches with a reservoir at the top is feasible.


Sign in / Sign up

Export Citation Format

Share Document