scholarly journals Characteristics of emission and light-absorption of size-segregated carbonaceous aerosol emitted from four types of coal combustion at different combustion temperatures

2021 ◽  
pp. 101265
Author(s):  
Huiying Peng ◽  
Yueshe Wang ◽  
Yanlong Wang ◽  
Yukun Chen ◽  
Dan Li ◽  
...  
2020 ◽  
Vol 90 ◽  
pp. 286-296 ◽  
Author(s):  
Pengfei Chen ◽  
Shichang Kang ◽  
Chaman Gul ◽  
Lekhendra Tripathee ◽  
Xiaoxiang Wang ◽  
...  

2020 ◽  
Author(s):  
Ting Wang ◽  
Rujin Huang ◽  
Lu Yang ◽  
Wei Yuan ◽  
Yuquan Gong

<p>Atmospheric brown carbon (BrC) has significant impact on Earth’s radiative budget. However, due to our very limited knowledge about the relationship between BrC light absorption and the associated sources, the estimation for radiative effects of BrC is still largely constrained. In this study, we combine ultraviolet−visible (UV−vis) spectroscopy measurements and chemical analyses of BrC samples collected from January to December 2015 in urban Beijing, to investigated the sources of atmospheric BrC. The multiple liner regression model was applied to apportion the contributions of individual primary and secondary organic aerosol (OA) source components to light absorption of BrC. Our results indicated that biomass burning emission and secondary formation are highly absorbing up to 500 nm, and their contributions increased with the wavelengths. In contrast, the contribution of traffic emission and coal combustion to total absorption decreased with the wavelength and the large contributions were mostly found at shorter wavelengths. Then the mass absorption efficiency (MAE) of major light-absorbing components were estimated, which can provide a support to estimate the impact of BrC from these sources on the climate. The positive matrix factorization model were also used to verify the contributions of different source components of BrC absorption at 365 nm. The results consistently demonstrate that the biomass burning and secondary formation contributes significantly to the overall absorption, followed by coal combustion and traffic emission.</p>


2020 ◽  
Author(s):  
Ru-Jin Huang ◽  
Wei Yuan ◽  
Lu Yang ◽  
Jie Guo ◽  
Jing Duan ◽  
...  

<p>The impact of brown carbon aerosol (BrC) on the Earth’s radiative forcing balance has been widely recognized but remains uncertain, mainly because the relationships among BrC sources, chromophores, and optical properties of aerosol are poorly understood (Feng et al., 2013; Laskin et al., 2015). In this work, the light absorption properties and chromophore composition of BrC were investigated for samples collected in Xi’an, Northwest China from 2015 to 2016. Both absorption Ångström exponent and mass absorption efficiency show distinct seasonal differences, which could be attributed to the differences in sources and chromophore composition of BrC. Three groups of light-absorbing organics were found to be important BrC chromophores, including those show multiple absorption peaks at wavelength > 350 nm (12 polycyclic aromatic hydrocarbons and their derivatives) and those show single absorption peak at wavelength < 350 nm (10 nitrophenols and nitrosalicylic acids and 3 methoxyphenols). These measured BrC chromophores show distinct seasonal differences and contribute on average about 1.1% and 3.3% of light absorption of methanol-soluble BrC at 365 nm in summer and winter, respectively, about 7 and 5 times higher than the corresponding mass fractions in total organic carbon. The sources of BrC were resolved by positive matrix factorization (PMF) using these chromophores instead of commonly used non-light absorbing organic markers as model inputs. Our results show that in spring vehicular emissions and secondary formation are major sources of BrC (~70%), in fall coal combustion and vehicular emissions are major sources (~70%), in winter biomass burning and coal combustion become major sources (~80%), while in summer secondary BrC dominates (~60%).</p><p> </p><p>References:</p><p>Feng, Y., V. Ramanathan, and V. R. Kotamarthi: Brown carbon: A significant atmospheric absorber of solar radiation?, Atmos. Chem. Phys., 13, 8607-8621, doi:10.5194/acp-13-8607-2013, 2013.</p><p>Laskin, A., J. Laskin, and S. A. Nizkorodov: Chemistry of atmospheric brown carbon, Chem. Rev., 115, 4335-4382, doi:10.1021/cr5006167, 2015.</p>


2005 ◽  
Vol 5 (11) ◽  
pp. 3127-3137 ◽  
Author(s):  
J. J. Cao ◽  
F. Wu ◽  
J. C. Chow ◽  
S. C. Lee ◽  
Y. Li ◽  
...  

Abstract. Continuous measurements of atmospheric organic and elemental carbon (OC and EC) were taken during the high-pollution fall and winter seasons at Xi'an, Shaanxi Province, China from September 2003 through February 2004. Battery-powered mini-volume samplers collected PM2.5 samples daily and PM10 samples every third day. Samples were also obtained from the plumes of residential coal combustion, motor-vehicle exhaust, and biomass burning sources. These samples were analyzed for OC/EC by thermal/optical reflectance (TOR) following the Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol. OC and EC levels at Xi'an are higher than most urban cities in Asia. Average PM2.5 OC concentrations in fall and winter were 34.1±18.0 μg m−3 and 61.9±;33.2 μg m−3, respectively; while EC concentrations were 11.3±6.9 μg m−3 and 12.3±5.3 μg m−3, respectively. Most of the OC and EC were in the PM2.5 fraction. OC was strongly correlated (R>0.95) with EC in the autumn and moderately correlated (R=0.81) with EC during winter. Carbonaceous aerosol (OC×1.6+EC) accounted for 48.8%±10.1% of the PM2.5 mass during fall and 45.9±7.5% during winter. The average OC/EC ratio was 3.3 in fall and 5.1 in winter, with individual OC/EC ratios nearly always exceeding 2.0. The higher wintertime OC/EC corresponded to increased residential coal combustion for heating. Total carbon (TC) was associated with source contributions using absolute principal component analysis (APCA) with eight thermally-derived carbon fractions. During fall, 73% of TC was attributed to gasoline engine exhaust, 23% to diesel exhaust, and 4% to biomass burning. During winter, 44% of TC was attributed to gasoline engine exhaust, 44% to coal burning, 9% to biomass burning, and 3% to diesel engine exhaust.


2005 ◽  
Vol 5 (3) ◽  
pp. 3561-3593 ◽  
Author(s):  
J. J. Cao ◽  
J. C. Chow ◽  
S. C. Lee ◽  
Y. Li ◽  
S. W. Chen ◽  
...  

Abstract. Continuous observation of atmospheric organic and elemental carbon (OC, EC) were conducted at Xi'an during high pollution seasons from September 2003 to February 2004. PM2.5 samples were collected on pre-fired quartz-fiber filters with battery-powered mini-volume samplers every day and PM10 samples were collected every third days. Three types of source samples (i.e., coal-combustion, motor vehicle exhaust, and biomass burning) were also collected during ambient sampling period. Ambient and source samples were analyzed for OC and EC by thermal/optical reflectance (TOR) following the Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol. The average PM2.5 OC concentrations in fall and winter were 34.1±18.0 µg m-3 and 61.9±33.2 µg m-3, respectively, while EC were 11.3±6.9 µg m-3 and 12.3±5.3 µg m-3, respectively. Most of OC and EC were associated with fine particle (PM2.5) mode. The OC and EC levels at Xi'an are higher than most urban cities in Asia. The OC and EC in fall were found to be strongly correlated (R2>0.9), with moderate correlation in winter (R2=0.66). The carbonaceous aerosol accounted for 48.8±10.1% of the PM2.5 during fall and 45.9±7.5% during winter. Average OC/EC ratio was 3.3 in fall and 5.1 in winter with individual OC/EC ratios constantly exceeding 2.0. Elevated OC/EC ratios were found during heating seasons with increased coal combustion. The contribution of secondary organic carbon was not significant during winter. The time series of OC and EC showed periodic variability. Traffic contributes 5 and 7 day peaks in the spectrum, precipitation appears as a 10 day periodicity and biomass burning can be identified as a 24 day periodicity. Total carbon (TC) was apportioned by absolute principal component analysis (APCA) using the 8 carbon fraction data (OC1, OC2, OC3, OC4, EC1, EC2, EC3, and OP [a pyrolyzed carbon fraction]). TC attributes 73% to gasoline exhaust, 23% to diesel exhaust, and 4% to biomass burning during fall. However, TC attributes 44% each to gasoline exhaust and coal burning, 9% to biomass burning, and 3% to diesel exhaust during winter.


2020 ◽  
Vol 20 (24) ◽  
pp. 16041-16053
Author(s):  
Haiyan Ni ◽  
Ru-Jin Huang ◽  
Max M. Cosijn ◽  
Lu Yang ◽  
Jie Guo ◽  
...  

Abstract. To mitigate haze pollution in China, a better understanding of the sources of carbonaceous aerosols is required due to the complexity in multiple emissions and atmospheric processes. Here we combined the analysis of radiocarbon and the stable isotope 13C to investigate the sources and formation of carbonaceous aerosols collected in two Chinese megacities (Beijing and Xi'an) during severe haze events of a “red alarm” level from December 2016 to January 2017. The haze periods with daily PM2.5 concentrations as high as ∼ 400 µg m−3 were compared to subsequent clean periods (i.e., PM2.5 less than median concentrations during the winter 2016/2017) with PM2.5 concentrations below 100 µg m−3 in Xi'an and below 20 µg m−3 in Beijing. In Xi'an, liquid fossil fuel combustion was the dominant source of elemental carbon (EC; 44 %–57 %), followed by biomass burning (25 %–29 %) and coal combustion (17 %–29 %). In Beijing, coal combustion contributed 45 %–61 % of EC, and biomass burning (17 %–24 %) and liquid fossil fuel combustion (22 %–33 %) contributed less. Non-fossil sources contributed 51 %–56 % of organic carbon (OC) in Xi'an, and fossil sources contributed 63 %–69 % of OC in Beijing. Secondary OC (SOC) was largely contributed by non-fossil sources in Xi'an (56±6 %) and by fossil sources in Beijing (75±10 %), especially during haze periods. The fossil vs. non-fossil contributions to OC and EC did not change drastically during haze events in both Xi'an and Beijing. However, compared to clean periods, the contribution of coal combustion to EC during haze periods increased in Xi'an and decreased in Beijing. During clean periods, primary OC from biomass burning and fossil sources constituted ∼ 70 % of OC in Xi'an and ∼ 53 % of OC in Beijing. From clean to haze periods, the contribution of SOC to total OC increased in Xi'an but decreased in Beijing, suggesting that the contribution of secondary organic aerosol formation to increased OC during haze periods was more efficient in Xi'an than in Beijing. In Beijing, the high SOC fraction in total OC during clean periods was mainly due to an elevated contribution from non-fossil SOC. In Xi'an, a slight day–night difference was observed during the clean period with enhanced fossil contributions to OC and EC during the day. This day–night difference was negligible during severe haze periods, likely due to the enhanced accumulation of pollutants under stagnant weather conditions.


Sign in / Sign up

Export Citation Format

Share Document