Ammonia emission characteristics and emission factors of paddy field under reduced nitrogen fertilization

2021 ◽  
pp. 101291
Author(s):  
Lili Lu ◽  
Jingying Tang ◽  
Lingling Tan ◽  
Genyi Wu
2021 ◽  
Vol 13 (4) ◽  
pp. 2197
Author(s):  
Seongmin Kang ◽  
Joonyoung Roh ◽  
Eui-chan Jeon

NH3 is one of the major substances contributing to the secondary generation of PM2.5; therefore, management is required. In Korea, the management of NH3 is insufficient, and the emission factor used by EPA is the same as the one used when calculating emissions. In particular, waste incineration facilities do not currently calculate NH3 emissions. In the case of combustion facilities, the main ammonia emission source is the De-NOx facility, and, in the case of a power plant with a De-NOx facility, NH3 emission is calculated. Therefore, in the case of a Municipal Solid Waste (MSW) incinerator with the same facility installed, it is necessary to calculate NH3 emissions. In this study, the necessity of developing NH3 emission factors for an MSW incinerator and calculating emission was analyzed. In addition, elements to be considered when developing emission factors were analyzed. The study found that the NH3 emission factors for each MSW incinerator technology were calculated as Stoker 0.010 NH3 kg/ton and Fluidized Beds 0.004 NH3 kg/ton, which was greater than the NH3 emission factor 0.003 NH3 kg/ton for the MSW incinerator presented in EMEP/EEA (2016). As a result, it was able to identify the need for the development of NH3 emission factors in MSW incinerators in Korea. In addition, the statistical analysis of the difference between the incineration technology of MSW and the NH3 emission factor by the De-NOx facility showed a difference in terms of both incineration technology and De-NOx facilities, indicating that they should be considered together when developing the emission factor. In addition to MSW, it is believed that it will be necessary to review the development of emission factors for waste at workplaces and incineration facilities of sewage sludge.


2011 ◽  
Vol 103 (2) ◽  
pp. 520-528 ◽  
Author(s):  
Sebastián Cela ◽  
Montserrat Salmerón ◽  
Ramón Isla ◽  
José Cavero ◽  
Francisca Santiveri ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3459
Author(s):  
Fangfang Bai ◽  
Xuebin Qi ◽  
Ping Li ◽  
Dongmei Qiao ◽  
Jianming Wang ◽  
...  

Despite the known influence of nitrogen fertilization and groundwater conditions on soil microbial communities, the effects of their interactions on bacterial composition of denitrifier communities have been rarely quantified. Therefore, a large lysimeter experiment was conducted to examine how and to what extent groundwater table changes and reduced nitrogen application would influence the bacterial composition of nirK-type and nirS-type genes. The bacterial composition of nirK-type and nirS-type genes were compared at two levels of N input and three groundwater table levels. Our results demonstrated that depression of groundwater table, reduced nitrogen application and their interactions would lead to drastic shifts in the bacterial composition of nirS-type and nirK-type genes. Structural equation models (SEMs) indicated that depression of groundwater table and reduced nitrogen application not only directly altered the species composition of denitrifier bacterial communities, but also indirectly influenced them through regulating soil nutrient and salinity. Furthermore, the variation in soil NO3−–N and electrical conductivity caused by depression of groundwater table and reduced nitrogen application played the most important role in altering the community composition of denitrifier bacterial communities. Together, our findings provide first-hand evidence that depression of groundwater table and reduced nitrogen application jointly regulate the species composition of denitrifier bacterial communities in agricultural soil. We highlight that local environmental conditions such as groundwater table and soil attributes should be taken into account to enrich our knowledge of the impact of nitrogen fertilization on soil denitrifier bacterial communities, or even biogeochemical cycles.


Author(s):  
Luciano B. Mendes ◽  
Ilda F. F. Tinoco ◽  
Nico W. M. Ogink ◽  
Keller S. O. Rocha ◽  
Jairo A. Osorio S. ◽  
...  

This study was conducted with the aim of monitoring NH3 emissions from a mechanically and a naturally ventilated broiler house (MVB and NVB, respectively) and calculate their ammonia emission factors (fNH3). Bird stocking density was 13.5 and 11.1 birds m-2 for the MVB and NVB, respectively. The marketing age was 43 days and bedding consisted of dried coffee husks in its first time of use. Ventilation rates were calculated with the metabolic carbon dioxide mass balance method. Values of fNH3 were 0.32 ± 0.10 and 0.27 ± 0.07 g bird-1 d-1 for the MVB and NVB, respectively, and are in agreement to what was presented in other studies performed under similar conditions. The fNH3 estimated on yearly basis was 58 g bird-place-1 year-1. It was concluded that the different types of ventilation system between the studied broiler barns did not significantly affect emissions in the modeling process. The results obtained help providing reliable methodology for the determination of a solid database on NH3 emission factors for tropical conditions that can be used for future inventories, when performed in a sufficient number of barns that is representative for the Brazilian scenario.


2018 ◽  
Vol 25 (9) ◽  
pp. 8388-8395 ◽  
Author(s):  
Yanfang Feng ◽  
Haijun Sun ◽  
Lihong Xue ◽  
Yueman Wang ◽  
Linzhang Yang ◽  
...  

2020 ◽  
Vol 379 ◽  
pp. 122257 ◽  
Author(s):  
Rongting Huang ◽  
Hao Wu ◽  
Linjun Yang

Poljoprivreda ◽  
2017 ◽  
Vol 23 (2) ◽  
pp. 25-30
Author(s):  
Suzana Kristek ◽  
◽  
Lidija Lenar ◽  
Jurica Jović ◽  
Tihana Marček ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document