Development and deployment of an autonomous sensor for the in-situ radioactivity measurement in the marine environment

2018 ◽  
Vol 142 ◽  
pp. 181-186 ◽  
Author(s):  
Yingying Zhang ◽  
Bingwei Wu ◽  
Dongyan Liu ◽  
Ying Zhang ◽  
Yan Cheng
2021 ◽  
Vol 92 (3) ◽  
pp. 033301
Author(s):  
Zhenyu Sun ◽  
Fan Zhou ◽  
Zhe Cao ◽  
Ziheng Zhou ◽  
Xiaohu Wang ◽  
...  

2021 ◽  
Vol 16 (4) ◽  
pp. 121-137
Author(s):  
Michele Fabio Granata

The case-study of a steel bowstring bridge set in a marine environment and highly damaged by corrosion is presented. The bridge was built in 2004 and was repainted for corrosion protection in 2010. Despite the recent construction and the maintenance interventions, many structural elements like hangers are highly damaged by corrosion with decreasing performance in terms of serviceability and ultimate limit states. A deep investigation was carried out in order to assess the bridge and to establish the necessary retrofit actions to be carried out in the near future. In-situ tests reveal the reduced performance of the original steel in terms of strength and corrosion protection, together with the inefficiency of the successive maintenance interventions. The paper presents assessment of the bridge and retrofit measures, including replacement of the hangers and galvanization through thermal spray coating technology, in order to increase its service life. The results of the investigations and the intervention measures are outlined and discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
B. Abaroa-Pérez ◽  
G. Sánchez-Almeida ◽  
J. J. Hernández-Brito ◽  
D. Vega-Moreno

Solid phase extraction (SPE) is a consolidated technique for determining pollutants in seawater samples. The current tendency is to miniaturise systems that extract and determine pollutants in the environment, reducing the use of organic solvents, while maintaining the quality in the extraction and preconcentration. On the other hand, there is a need to develop new extraction systems that can be fitted to in situ continual monitoring buoys, especially for the marine environment. This work has developed a first model of a low-pressure micro-SPE (m-SPE) for persistent organic pollutants (POPs) that can be simply applied to in situ monitoring in the marine environment. This system reduces the volumes of sample and solvents required in the laboratory in comparison with conventional SPE. In the future, it could be used in automated or robotic systems in marine technologies such as marine gliders and oceanographic buoys. This system has been optimised and validated to determine polycyclic aromatic hydrocarbons (PAH) in seawater samples, but it could also be applied to other kinds of persistent organic pollutants (POPs) and emerging pollutants.


Ocean Science ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 751-768 ◽  
Author(s):  
Cale A. Miller ◽  
Katie Pocock ◽  
Wiley Evans ◽  
Amanda L. Kelley

Abstract. The commercially available Sea-Bird SeaFET™ provides an accessible way for a broad community of researchers to study ocean acidification and obtain robust measurements of seawater pH via the use of an in situ autonomous sensor. There are pitfalls, however, that have been detailed in previous best practices for sensor care, deployment, and data handling. Here, we took advantage of two distinctly different coastal settings to evaluate the Sea-Bird SeaFET™ and examine the multitude of scenarios in which problems may arise confounding the accuracy of measured pH. High-resolution temporal measurements of pH were obtained during 3- to 5-month field deployments in three separate locations (two in south-central Alaska, USA, and one in British Columbia, Canada) spanning a broad range of nearshore temperature and salinity conditions. Both the internal and external electrodes onboard the SeaFET™ were evaluated against robust benchtop measurements for accuracy using the factory calibration, an in situ single-point calibration, or an in situ multi-point calibration. In addition, two sensors deployed in parallel in Kasitsna Bay, Alaska, USA, were compared for inter-sensor variability in order to quantify other factors contributing to the sensor's intrinsic inaccuracies. Based on our results, the multi-point calibration method provided the highest accuracy (< 0.025 difference in pH) of pH when compared against benchtop measurements. Spectral analysis of time series data showed that during spring in Alaskan waters, a range of tidal frequencies dominated pH variability, while seasonal oceanographic conditions were the dominant driver in Canadian waters. Further, it is suggested that spectral analysis performed on initial deployments may be able to act as an a posteriori method to better identify appropriate calibration regimes. Based on this evaluation, we provide a comprehensive assessment of the potential sources of uncertainty associated with accuracy and precision of the SeaFET™ electrodes.


Sign in / Sign up

Export Citation Format

Share Document