scholarly journals Mite density, not diversity, declines with biomass removal in Patagonian woodlands

2022 ◽  
Vol 169 ◽  
pp. 104242
Author(s):  
Margarita M. Fernández ◽  
Cecilia Casas ◽  
José C. Bedano ◽  
David M. Eissenstat ◽  
Margot W. Kaye ◽  
...  
Keyword(s):  
Author(s):  
Colin P. R. McCarter ◽  
Stephen D. Sebestyen ◽  
Susan L. Eggert ◽  
Kristine M. Haynes ◽  
Randall K. Kolka ◽  
...  

2021 ◽  
Author(s):  
Anna Kirschbaum ◽  
Oliver Bossdorf ◽  
J F Scheepens

Abstract Aims Plant populations in managed grasslands are subject to strong selection exerted by grazing, mowing and fertilization. Many previous studies showed that this can cause evolutionary changes in mean trait values, but little is known about the evolution of phenotypic plasticity in response to land use. In this study, we aimed to elucidate the relationships between phenotypic plasticity – specifically, regrowth ability after biomass removal – and the intensity of grassland management and levels of temporal variation therein. Methods We conducted an outdoor common garden experiment to test if plants from more intensively mown and grazed sites showed an increased ability to regrow after biomass removal. We used three common plant species from temperate European grasslands, with seed material from 58 – 68 populations along gradients of land-use intensity, ranging from extensive (only light grazing) to very intensive management (up to four cuts per year). Important findings In two out of three species, we found significant population differentiation in regrowth ability after clipping. While variation in regrowth ability was unrelated to the mean land-use intensity of populations of origin, we found a relationship with its temporal variation in P. lanceolata, where plants experiencing less variable environmental conditions over the last 11 years showed stronger regrowth in reproductive biomass after clipping. Therefore, while mean grazing and mowing intensity may not select for regrowth ability, the temporal stability of the environmental heterogeneity created by land use may have caused its evolution in some species.


Hacquetia ◽  
2018 ◽  
Vol 17 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Orsolya Valkó ◽  
Stephen Venn ◽  
Michał Żmihorski ◽  
Idoia Biurrun ◽  
Rocco Labadessa ◽  
...  

Abstract Disturbance by biomass removal is a crucial mechanism maintaining the diversity of Palaearctic grasslands, which are unique biodiversity hotspots. The century-long traditional land use of mowing, grazing and burning, has been fundamentally changed in many parts of the Palaearctic. Due to socio-economic changes, large areas of former pastures and meadows have been abandoned, leading to a succession towards secondary scrublands or forest and the encroachment of competitor grass species, all leading to a decrease in biodiversity. Here we report the causes and consequences of the cessation of traditional grassland management regimes, provide strategies for reducing the impact of abandonment and consider these from the perspective of sustainability. We consider the possibilities for initiating sustainable management regimes in the contemporary socio-economic environment, and discuss the prospects and limitation of alternative management regimes in the conservation of grassland biodiversity. These themes are also the core topics of this Special Feature, edited by the EDGG. We hope that this Special Feature will encourage steps towards more sustainable strategies for the conservation of Palaearctic grasslands and the integration of the sustainability perspective into their conservation.


2020 ◽  
Author(s):  
Willis Ndeda Ochilo ◽  
Gideon Nyamasyo ◽  
John Agano

Abstract The red spider mite, Tetranychus evansi is a critical pest of tomato in the tropics. Control of T. evansi has traditionally depended on acaricide treatments. However, it is only in a handful of crops where monitoring techniques for mites, using statistical methods, have been developed to help farmers decide when to spray. The objective of this study, therefore, was to develop a sampling plan that would help farmers increase accuracy, and reduce the labor and time needed to monitor T. evansi on tomato. The distribution of T. evansi within-plant was aggregated, and intermediate leaves (YFL) was the most appropriate sampling unit to evaluate the mite density. Analysis based on Taylor's Power Law showed an aggregated pattern of distribution of T. evansi, while assessment of the fitness of the binomial model indicated that a tally threshold of 5 mites per YFL provided the best fit. Consequently, binomial sequential sampling plans premised on three action thresholds (0.1, 0.2 and 0.3) were developed. The binomial sequential sampling plan for T. evansi developed in this study has the potential to significantly increase the chance for targeted acaricide applications. This judicious use of pesticides is especially crucial within the context of integrated pest management (IPM).


2012 ◽  
Vol 58 (0) ◽  
pp. 66-72
Author(s):  
Shin-ichiro Okazaki ◽  
Katsunori Tamashima ◽  
Kimihiro Amekawa ◽  
Mitsutoshi Momoshita ◽  
Masami Takagi

2010 ◽  
Vol 25 (1) ◽  
pp. 12-17 ◽  
Author(s):  
William J. Elliot

Abstract As society looks to our nation's forests as sources of energy, there is a risk of increased runoff and erosion. This report gives an overview of watershed processes, discusses the impacts of biomass removal on those processes, provides some guidelines to minimize adverse impacts, anddescribes an approach for estimating the effects of biomass removal on soil erosion.


2017 ◽  
Vol 34 (2) ◽  
pp. 144-154 ◽  
Author(s):  
Adria L. Fernandez ◽  
Karina P. Fabrizzi ◽  
Nicole E. Tautges ◽  
John A. Lamb ◽  
Craig C. Sheaffer

AbstractAlfalfa is recommended as a rotational crop in corn production, due to its ability to contribute to soil nitrogen (N) and carbon (C) stocks through atmospheric N2fixation and above- and belowground biomass production. However, there is little information on how alfalfa management practices affect contributions to soil and subsequent corn crop yields, and research has not been targeted to organic systems. A study was conducted to determine the effects of alfalfa stand age, cutting frequency and biomass removal on soil C and N status and corn yields at three organically managed Minnesota locations. In one experiment, five cutting treatments were applied in nine environments: two, three and four cuts with biomass removal; three cuts with biomass remaining in place; and a no-cut control. In the other experiment, corn was planted following 1-, 2-, 3- or 4-year-old alfalfa stands and a no-alfalfa control. Yield was measured in the subsequent corn crop. In the cutting experiment, the two- and three-cut treatments with biomass removal reduced soil mineral N by 12.6 and 11.5%, respectively, compared with the control. Potentially mineralizable N (PMN) was not generally affected by cutting treatments. The three-cut no-removal increased potentially mineralizable C by 17% compared with the other treatments, but lowered soil total C in two environments, suggesting a priming effect in which addition of alfalfa biomass stimulated microbial mineralization of native soil C. Although both yields and soil mineral N tended to be higher in treatments where biomass remained in place, this advantage was small and inconsistent, indicating that farmers need not forgo hay harvest to obtain the rotational benefits of an alfalfa stand. The lack of overall correlation between corn grain yields and mineral and potentially mineralizable N suggests that alfalfa N contribution was not the driver of the yield increase in the no-removal treatments. Alfalfa stand age had inconsistent effects on fall-incorporated N and soil N and C parameters. Beyond the first year, increased alfalfa stand age did not increase soil mineral N or PMN. However, corn yield increased following older stands. Yields were 29, 77 and 90% higher following first-, second- and third-year alfalfa stands than the no-alfalfa control, respectively. This indicates that alfalfa may benefit succeeding corn through mechanisms other than N contribution, potentially including P solubilization and weed suppression. These effects have been less studied than N credits, but are of high value in organic cropping systems.


2018 ◽  
Vol 23 (3) ◽  
pp. 405 ◽  
Author(s):  
Saeid Javadi Khederi ◽  
Mohammad Khanjani ◽  
Mansur Gholami ◽  
Enrico De Lillo

The erineum strain of Colomerus vitis (GEM) is the most destructive pest of vineyards in western Iran and sometimes causes considerable damages to the grapevine. Little information is available on the susceptibility of the grapevine to this pest and its knowledge can be useful for a sustainable management of GEM. The present study was aimed at evaluating the responses of the plants to the infestation of GEM in order to compare the resistance/susceptibility of some native cultivars to this pest. Also, the profiling of JA, SA and IAA in leaves of infested plants of Sezdang was studied. The experiment was carried out on eighteen native cultivars and the non-native Muscat Gordo which were selected amongst the most common in southern and western Iran. Potted plants were cultivated under greenhouse conditions at a temperature of 32 ± 3.8°C, 75 ± 5% R.H. and a photoperiod of L16: D8 h. The impact of GEM was evaluated on the basis of the leaf area and weight, number and size of the erinea, and percentage of leaves with erinea three months after the infestation. The cane length was measured, too. Mite density on galled leaves (three months after the infestation) and in buds (at the bud breaking) was assessed.        Cluster analysis based on the leaf damage index induced by GEM allowed to distinguish highly affected (Sezdang, Khalili, Ghalati and Rishbaba), moderately affected (Neyshaboori, Gazne, Muscat, Lale, Shahani Sefid, Ahmad, Monagha and Sia) and scarcely affected (Yaghuti, Rotabi, White Thompson, Atabaki, Koladari and Sahebi and Shahani Gerd) cultivars. The mite density into the buds and on the galled leaves was higher in the medium-late (Rishbaba and Khalili) and late ripening (Sezdang and Ghalati) cultivars rather than in the early (Sahebi and Shahani Gerd) and early-medium (Atabaki) ripening ones. The leaf damaged area, the leaf weight, the shoot length and the erineum development were correlated to the mite density and were the highest on Sezdang, Khalili, Ghalati and Rishbaba and the lowest on Atabaki, Koladari, Sahebi and Shahani Gerd. The highest density of the overwintering population was detected in proximal buds of all treated cultivars.        The plant responses and the mite density were investigated also in the second and third year after the first mite infestation on highly affected (Sezdang, Khalili, Ghalati, Rishbaba), a few of the moderately affected (Neyshaboori, Gazne, Muscat) and the scarcely affected cultivars (White Thompson, Atabaki, Koladari, Sahebi, Shahani Gerd). The leaf damaged area, the percentage of galled leaves, the percentage of cane length reduction and the mite density strongly decreased during all three years of observations on the highly affected Sezdang, Khalili and Gazne. On the contrary, Ghalati and Rishbaba displayed an increase of the leaf damaged area, leaf damaged index and mite density on galled leaves during the same period in comparison to the first year of observation. The percentage of the leaves with erinea, the leaf damaged area and the mite density of Sezdang were highly and positively correlated with IAA while a negative correlation was found between the leaf damaged area and the mite density with SA and JA in the assayed years. Almost all data currently collected allowed a recognition of White Thompson, Atabaki, Koladari, Sahebi and Shahani Gerd as the least affected cultivars.


Sign in / Sign up

Export Citation Format

Share Document