Finite element simulation and analytical analysis for nano field emission sources that terminate with a single atom: A new perspective on nanotips

2011 ◽  
Vol 258 (5) ◽  
pp. 1750-1755 ◽  
Author(s):  
Moh’d Rezeq
2014 ◽  
Vol 635-637 ◽  
pp. 228-232
Author(s):  
Jian He ◽  
Ji Sheng Ma ◽  
Da Lin Wu

Airbag is widely used in heavy equipment dropped field with its efficient cushion performance and low cost. The calculation method used now for the process of airbag landing mainly is simulative calculation: analytical analysis and finite element simulation, but there are less systematic introduction for the mathematical model behind these methods in past papers. This paper mainly does the summary for the mathematical model of vented airbag which is usually used.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1986 ◽  
Vol 14 (2) ◽  
pp. 125-136 ◽  
Author(s):  
Y. Nakajima ◽  
J. Padovan

Abstract This paper extends the finite element simulation scheme to handle the problem of tires undergoing sliding (skidding) impact into obstructions. Since the inertial characteristics are handled by the algorithm developed, the full range of operating environments can be accommodated. This includes the treatment of impacts with holes and bumps of arbitrary geometry.


Sign in / Sign up

Export Citation Format

Share Document