Effect of calcination temperature on the adsorption and photocatalytic activity of hydrothermally synthesized TiO2 nanotubes

2012 ◽  
Vol 258 (18) ◽  
pp. 7188-7194 ◽  
Author(s):  
Fang Jiang ◽  
Shourong Zheng ◽  
Lichao An ◽  
Huan Chen
2009 ◽  
Vol 255 (20) ◽  
pp. 8624-8628 ◽  
Author(s):  
Yue-Hua Xu ◽  
Chao Chen ◽  
Xue-Ling Yang ◽  
Xin Li ◽  
Bing-Feng Wang

RSC Advances ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 6643-6650 ◽  
Author(s):  
Lijuan Han ◽  
Zheng Ma ◽  
Zhihe Luo ◽  
Gang Liu ◽  
Jiantai Ma ◽  
...  

The precursor with nanotubes structure can be hydrogenated easily in lower temperature comparing with nanobelts. The light absorption and photocatalytic activity of hydrogenated TiO2 nanotubes were enhanced drastically.


2020 ◽  
Vol 21 (1) ◽  
pp. 108
Author(s):  
Yayuk Astuti ◽  
Brigita Maria Listyani ◽  
Linda Suyati ◽  
Adi Darmawan

Research on synthesis of bismuth oxide (Bi2O3) using sol-gel method with varying calcination temperatures at 500, 600, and 700 °C has been done. This study aims to determine the effect of calcination temperature on the characteristics of the obtained products which encompasses crystal structure, surface morphology, band-gap energy, and photocatalytic activity for the decolorization of methyl orange dyes through its kinetic study. Bismuth oxide prepared by sol-gel method was undertaken by dissolving Bi(NO3)3·5H2O and citric acid in HNO3. The mixture was stirred then heated at 100 °C. The gel formed was dried in the oven and then calcined at 500, 600, and 700 °C for 5 h. The obtained products were a pale yellow powder, indicating the formation of bismuth oxide. This is confirmed by the existence of Bi–O and Bi–O–Bi functional groups through FTIR analysis. All three products possess the same mixed crystal structures of α-Bi2O3 (monoclinic) and γ-Bi2O3 (body center cubic), but their morphologies and band gap values are different. The higher the calcination temperature, the larger the particle size and the smaller the band gap value. The accumulative differences in characteristics appoint SG700 to have the highest photocatalytic activity compared to SG600 and SG500 as indicated by its percent degradation value and decolorization rate constant.


Author(s):  
Weerana Eh Kan ◽  
Jamil Roslan ◽  
Ruzinah Isha

<p>Conservative desalination technology including distillation requires high energy and cost to operate. Hence, pretreatment process can be done prior to desalination to overcome energy demand and cost reduction. Objective of this research is to study the effect of calcination temperature of hybrid catalyst in photocatalytic reactor system in the seawater desalination, i.e. salt removal in the seawater. The catalyst was synthesized via wet impregnation method with 1:1 weight ratio of TiO<sub>2</sub> and activated oil palm fiber ash (Ti:Ash). The catalyst was calcined at different temperature, i.e. 500 <sup>o</sup>C and 800 <sup>o</sup>C. The study was carried out in a one liter Borosilicate photoreactor equipped with mercury light of 365 nanometers for two hours with 400 rpm mixing and catalyst to seawater sample weight ratio of 1:400. The Chemical Oxygen Demand (COD), pH, dissolved oxygen (DO), turbidity and conductivity of the seawater were analyzed prior and after the testing. The fresh and spent catalysts were characterized via X-Ray Diffractogram (XRD and Nitrogen physisorption analysis. The calcination temperature significantly influenced the adsorption behaviour and photocatalytic activity. However, Ti:Ash which calcined at 800 <sup>o</sup>C has less photocatalytic activity. It might be because the surface of fiber ash was sintered after calcined at high temperature. The Ti:Ash catalyst that calcined at 500 <sup>o</sup>C was found to be the most effective catalyst in the desalination of seawater by reducing the salt concentration of more than 9 % compared to Ti:Ash calcined at 800 <sup>o</sup>C. It can be concluded that catalyst calcination at 500 °C has better character, performance and economically feasible catalyst for seawater desalination. Copyright © 2016 BCREC GROUP. All rights reserved</p><p><em>Received: 22<sup>nd</sup> January 2016; Revised: 23<sup>rd</sup> February 2016; Accepted: 23<sup>rd</sup> February 2016</em></p><strong>How to Cite:</strong> Kan, W.E., Roslan, J., Isha R. (2016). Effect of Calcination Temperature on Performance of Photocatalytic Reactor System for Seawater Pretreatment. <em>Bulletin of Chemical Reaction Engineering &amp; Catalysis</em>, 11 (2): 230-237 (doi:10.9767/bcrec.11.2.554.230-237)<p><strong>Permalink/DOI:</strong> http://dx.doi.org/10.9767/bcrec.11.2.554.230-237</p>


2021 ◽  
Vol 21 (7) ◽  
pp. 4016-4021
Author(s):  
Myeongjun Ji ◽  
Jeong Hyun Kim ◽  
Cheol-Hui Ryu ◽  
Young-In Lee

In the present work, Ga2O3 nanofibers were successfully synthesized by electrospinning a solution of polyvinylpyrrolidone (PVP) and gallium nitrate, followed by temperature-controlled calcination treatment of the as-spun PVP and gallium nitrate composite nanofibers. The crystallinity and crystallite size of the Ga2O3 nanofibers can be readily controlled by varying the calcination temperature. From the physicochemical analysis results of the synthesized nanofiber, it was found that the nanofiber calcined at a higher temperature showed a higher crystallinity and a larger crystallite size. The photocatalytic degradation results on rhodamine-B (Rho B) revealed that the photocatalytic activity of the Ga2O3 nanofibers can be improved by optimizing the conflicting characteristics, crystallinity and crystallite size, through the control of the calcination temperature. The photocatalytic activity of a nanofiber calcined at 800 °C for the degradation of Rho B under ultraviolet irradiation exhibits 2.39 and 1.16 times higher than that of nanofibers synthesized at 700 °C and 900 °C, respectively, which is ascribed to relatively efficient charge transfer and dye molecule adsorption by its proper crystallinity and crystallite size.


Sign in / Sign up

Export Citation Format

Share Document